

Walter Mora F.

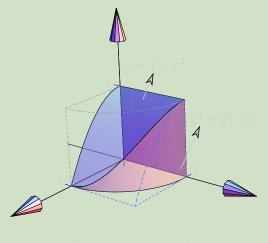
Escuela de Matemática

Instituto Tecnológico de Costa Rica

CÁLCULO EN VARIAS VARIABLES

PDF con Animaciones 3D

1ra ediciór

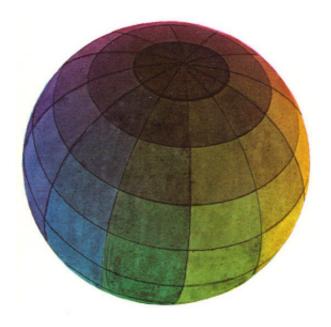


CÁLCULO EN VARIAS VARIABLES.

PDF Interactivo. Primera edición.

Puede ver y manipular las figuras en 3D haciendo clic sobre ellas (necesita una conexión a Internet).

Prof. Walter Mora F., Escuela de Matemática Instituto Tecnológico de Costa Rica. (www.tec-digital.itcr.ac.cr/revistamatematica/)



Este libro se distribuye bajo la licencia Creative Commons Reconocimiento - No Comercial - Sin obra derivada 3.0 Unported License. Esta

Este libro se distribuye dajo la licencia Creative Commons Recondenimento - No Comercial - Sin obra derivada 3.0 Unported License. Esta licencia permite copiado y distribución gratuita, pero no permite venta ni modificaciones de este material. Ver http://creativecommons.org/.
Limite de responsabilidad y exención de garantía: El autor o los autores han hecho su mejor esfuerzo en la preparación de este material. Esta edición se proporciona"tal cual". Se distribuye gratuitamente con la esperanza de que sea útil, pero sin ninguna garantía expresa o implícita respecto a la exactitud o completitud del contenido.
La Revista digital Matemáticas, Educación e Internet es una publicación electrónica. El material publicado en ella expresa la opinión de sus autores y no necesariamente la opinión de la revista ni la del Instituto Tecnológico de Costa Rica.

no hay carga de applets, probar con: http://dl.dropbox.com/u/57684129/revistamatematica/Libros/index.htm

Copyright© Revista digital Matemática Educación e Internet (www.tec-digital.itcr.ac.cr/revistamatematica/). Primera Edición. Correo Electrónico: wmora2@gmail.com
Escuela de Matemática
Instituto Tecnológico de Costa Rica
Apdo. 159-7050, Cartago
Teléfono (506)25502225
Fax (506)25502493

Mora Flores, Walter.
Cálculo en Varias Variables. 1ra ed.
- Escuela de Matemática,Instituto Tecnológico de Costa Rica. 2012.
340 pp.
ISBN Obra Independiente: 978-9968-641-12-8
1. Cálculo. 2. Integral doble y triple 3. Integral de línea y superficie.

Contenido

Pre	facio	vii	
1	Seco	ciones Cónicas	1
	1.1	Introducción.	1
	1.2	Preliminares	3
	1.3	Parábola	5
		1.3.1 Tratamiento analítico.	7
	1.4	Elipse	12
		1.4.1 Tratamiento analítico.	14
	1.5	Hipérbola.	19
		1.5.1 Tratamiento analítico.	21
	1.6	Excentricidad: Otra manera de definir las cónicas.	26
	1.7	Ecuación polar de una cónica.	29
	1.8	Cónicas y la ecuación de segundo grado	31
2	Superficies y Sólidos.		33
	2.1	Espacio tridimensional. Coordenadas Cartesianas.	33
	2.2	Funciones de dos variables	35
	2.3	Superficies en \mathbb{R}^3	38
		2.3.1 Curvas en el espacio.	39
		2.3.2 Planos	42
		2.3.3 Superficies cilíndricas o "cilindros".	45
	2.4	Superficies cuadráticas.	48
		2.4.1 Curvas de nivel y trazas.	48
		2.4.2 Cuádricas	52
	2.5	Sólidos simples	60
			iii

		2.5.1 Visualizando curvas intersección entre superficies	60	
		2.5.2 Dibujo de sólidos simples	64	
	2.6	Proyección de un sólido	70	
3	Cálc	Cálculo diferencial en varias variables		
	3.1	Introducción	80	
	3.2	Límites de funciones de varias variables.	81	
	3.3	Teoremas sobre límites	82	
	3.4	Derivadas parciales.	86	
	3.5	Derivadas Parciales de Orden Superior	89	
	3.6	Funciones diferenciables	94	
	3.7	Aproximación lineal para $f: \mathbb{R} \longrightarrow \mathbb{R}$	95	
	3.8	Aproximación lineal si $f: \mathbb{R}^2 \to \mathbb{R}$. Plano tangente.	95	
	3.9	Diferenciabilidad en el caso general.	97	
	3.10	Diferencial total.	99	
	3.11	Regla de la Cadena.	101	
	3.12	Derivación implícita.	107	
	3.13	Derivación Implícita. Caso de dos Ecuaciones.	111	
	3.14	Vector Gradiente.	113	
	3.15	Derivada direccional	114	
	3.16	Vector Unitario Tangente.	120	
	3.17	Gradiente, Curvas y Superficies de Nivel.	121	
	3.18	Plano Tangente.	122	
4	Máximos y mínimos.		130	
	4.1	Introducción	130	
	4.2	Máximos y mínimos locales en varias variables.	131	
	4.3	Puntos críticos y extremos locales	131	
	4.4	Clasificación de puntos críticos	132	
	4.5	Clasificación de puntos críticos en el caso de dos variables.	134	
	4.6	Extremos con restricciones: Multiplicadores de Lagrange	137	
	4.7	Criterio de clasificación para puntos críticos en 3 variables o más.	141	
		4.7.1 Formas cuadráticas.	141	
		4.7.2 Formas cuadráticas con restricciones lineales.	144	
		4.7.3 Clasificación de puntos críticos.	145	
		4.7.4 Clasificación de puntos críticos para problemas con restricciones.	147	
	4.8	Extremos globales. Condiciones de Kuhn-Tucker.	151	
		4.8.1 Condiciones de Kuhn-Tucker.	152	
5	Integral doble e integral triple. Cambio de variable.		155	
	5.1	Integral Doble.	155	
	5.2	Cálculo de integrales dobles. Integral iterada.	157	
	5.3	Área y Volumen	161	
	5.4	Cambio de Variable en una Integral Doble.	168	
		5.4.1 Caso de Coordenadas Polares.	174	
	5.5	Integral Triple.	182	

	5.6	Cambio de Variables en Integral Triple.	189
	5.7	Coordenadas Cilíndricas.	190
	5.8	Coordenadas Esféricas.	200
		5.8.1 Describiendo Superficies en Coordenadas Esféricas.	200
		5.8.2 Cambio de Variable con Coordenadas Esféricas.	203
	5.9	Singularidades.	210
6	Integ	ral de línea. Integral de superficie.	212
	6.1	Curvas y Parametrizaciones.	212
	6.2	Campos Escalares y Campos Vectoriales.	218
	6.3	Longitud de una Curva.	220
	6.4	Integral de Línea para Campos Escalares.	221
	6.5	(*)Longitud de Arco en Coordenadas Polares.	223
	6.6	Trabajo como Integral de Línea.	224
	6.7	Campos Conservativos. Independencia de la Trayectoria.	231
	6.8	Teorema de Green (en el plano).	235
	6.9	Integral de Línea para el Área.	237
	6.10	Superficies Parametrizadas.	240
	6.11	Superficies Regulares.	242
	6.12	Área de una Superficie.	242
	6.13	Integral sobre una superficie.	247
	6.14	Integral de Flujo.	254
		6.14.1 Superficies Orientables.	256
	6.15	Teorema de la Divergencia.	258
	6.16	Teorema de Stokes (Teorema de Green en el espacio).	263
Apén	idice A	: Más sobre cónicas	276
	A.1	Preliminares: Traslación y rotación de ejes.	277
	A.2	Estudio de la ecuación general.	280
	A.3	Invariantes y clasificación de cónicas.	285
	A.4	Reconocimiento de cónicas con métodos matriciales.	288
	A.5	Ecuación paramétrica de una cónica.	289
Bibli	ografía		294
Soluc	ción de	los Ejercicios	295
	Soluc	iones del Capítulo 1	295
	Soluciones del Capítulo 2		300
	Soluc	315	
	Soluc	324	
	Soluc	iones del Capítulo 5	329
		iones del Capítulo 6	334

Prefacio

Uno de los objetivos de este libro es la visualización en 3D. La mayoría de figuras en 3D tienen una liga a un applet (debe tener una conexión a Internet), en este applet el lector puede manipular las figuras con el ratón. La idea es visualizar no solo el espacio tridimensional, también poder entrenar en visualizar cortes de superficies, intersecciones y proyecciones de una superficie o un sólido, en algunos de los planos XY, XZ o YZ. Este conocimiento se aplica después en el cálculo de integrales dobles, triples, de línea y de superficie. Este es un libro para el profesor y el estudiante. Se trata de refrescar con una introducción con la teoría que sustenta los cálculos. Luego se presentan una ejemplos para aprender destrezas de cálculo. Muchos de estos ejemplos han aparecido en exámenes, en el curso de Cálculo Superior del Instituto Tecnológico de Costa Rica. En esta edición se completaron todos los applets y se incluye una introducción intuitiva a los temas de cambio de variable, integrales de línea y superficie, circulación y flujo, divergencia, rotacional y teorema de Stokes.

Esta es una nueva revisión en la que cambiaron y/o se mejoraron algunos gráficos, se redistribuyó parte del material y se corrigieron algunos errores.

W. Mora F.

Cartago, Costa Rica. Julio 2013.

SECCIONES CÓNICAS

1.1 Introducción.

Además de la rectas, los círculos, los planos y las esferas; los griegos se interesaron por las curvas obtenidas como secciones de un cono (parábolas, elipses e hipérbolas). No es totalmente claro el porqué del interés en estas curvas ([15], [13]).

Las referencias que están disponibles parecen relacionar las cónicas con el problema de duplicación del cubo (problema de Delos): Dado un cubo de lados de medida s y por tanto de volumen s^3 , encontrar un cubo de lados de medida x y volumen $2s^3$. Hay que entender que solo se podía usar las condiciones auto-impuestas en la época: Las construcciones debían hacerse solo con regla (sin marcas) y compás. Hipócrates redujo el problema a un problema de proporciones,

$$s: x = x: y = y: 2s$$
 (1.1)

De aquí se deduce que los valores x,y deben estar en la parábola $x^2 = sy$ y en la hipérbola $xy = 2s^2$. La solución se obtiene como la intersección de estas curvas, $x = \sqrt[3]{2}s$ que es un número que no se puede construir con regla y compás (como se demostró un 2000 años después). En la época griega, estas curvas aparecen como relaciones geométricas.

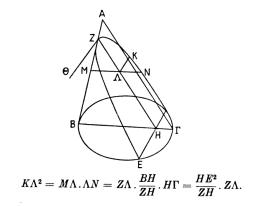


Figura 1.1: Derivación de la ecuación de la parábola según Apolonio de Perga ([13]).

Menecmo (320 a. C.) parece ser el primero en encontrar estas curvas, en sus esfuerzos por resolver el problema de Delos de manera geométrica. No es claro como pudo llegar a estas curvas (aunque hay varias conjeturas). Es probable que fuera de una manera similar a la manera en la que Apolonio de Perga (262 a.C.) las deduce en sus libros.

En el siglo III a.C., Apolonio estudia las cónicas como una sección de un cono circular y caracteriza los puntos de la cónica según sus distancias a dos líneas y deduce una gran cantidad de propiedades geométricas a partir de su caracterización, todo en términos geométricos, sin notación algebraica (la manipulación de las cónicas es esencialmente algebraica, disfrazada en forma geométrica). Sus tratados sobre cónicas fueron una joya de las matemática antigua.

Pappus de Alejandría (a.C.290 - a. C.350) publicó una obra en la que se resume los conocimientos matemáticos de su época, recogiendo fragmentos, a veces íntegros, de las obras que constituían los fundamentos de la enseñanza de las matemáticas en la ciudad de Alejandría, hoy en gran parte perdidas. En lo que respecta a cónicas, su contribución más importante fue la introducción de los conceptos de foco, directriz y excentricidad de una cónica con lo que se

puede dar una definición equivalente en términos de la proporción entre la distancia de los puntos de la cónica a un foco y la distancia a una directriz; esta proporción es constante y se denota con e y se le llama excentricidad de la cónica.

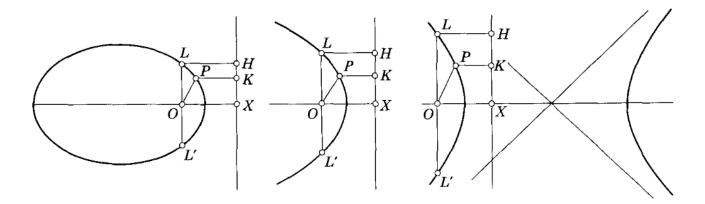


Figura 1.2: Definición de una cónica usando foco, directriz y excentricidad.

Después de Pappus pasaron doce siglos en el que hubo una total pérdida de interés por las cónicas (desde los tiempos de Pappus hasta el siglo XVII). Luego vino un renovado interés en una época en que se tenían nuevos métodos (los de Desargues y los de al geometría analítica) y las necesidades de la nueva astronomía, por ejemplo.

Para los pioneros de la ciencia moderna (Galileo, Kepler, Huygens y Newton), los estudios de Apolonio sobre la parábola, hipérbola y la elipse fueron el punto de partida para su exploración de las leyes de la naturaleza. Con la introducción de la geometría analítica (geometría con coordenadas más la posibilidad de manipular y resolver ecuaciones algebraicas), las curvas planas se podían definir por una ecuación de dos variables. J. Wallis fue el primero en probar de manera clara, en 1655, que la ecuación

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

es la representación algebraica de las cónicas. Según los coeficientes A,B,C,D,E y F, hay curvas de diversa naturaleza. Por ejemplo, $x^2 + y^2 = 0$ la satisface solo el punto (x,y) = (0,0) mientras que $x^2 + y^2 + 1 = 0$ no tiene solución. Si la ecuación factoriza como $(A_1x + B_1y + C_1)(A_2x + B_2y + C_2) = 0$ tendríamos un par de rectas, es decir, los puntos que están sobre las rectas de ecuación $A_1x + B_1y + C_1 = 0$ o $A_2x + B_2y + C_1 = 0$ satisfacen el caso reducible. Fuera de estos 'casos degenerados' y del caso reducible, queda el caso irreducible que corresponde a las parábolas, elipses e hipérbolas.

En este capítulo se introducen las cónicas como lugares geométricos¹ y luego se pasa a la versión analítica. En la primera parte solo consideramos cónicas con eje paralelo a los ejes coordenados, es decir, cónicas de ecuación $Ax^2 + Cy^2 + Dx + Ey + F = 0$. En la segunda parte se considera la ecuación general $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ que, en el caso no degenerado, corresponde a cónicas con rotación. Haciendo un cambio de variable, se "elimina la rotación" y volvemos al caso estándar en un nuevo sistema de ejes.

¹Las definiciones que se presentan son equivalentes a la definición original de las "cónicas" como una sección de un cono. Una demostración elegante de esta equivalencia fue presentada en 1822 por el matemático belga G.P. Dandelin. Aunque es sencilla, en este texto no se incluye la demostración. Se puede consultar [?].

1.2 Preliminares

Graficador de cónicas. Una manera fácil de obtener la representación gráfica de una cónica es introducir su ecuación (o sus propiedades) en WOLFRAM ALPHA, en

http://www.wolframalpha.com/input/?i=conics

Distancia entre dos puntos. Recordemos que la distancia euclidiana de un punto $A = (a_1, a_2)$ a otro punto $B = (b_1, b_2)$ es

$$d(A,B) = ||A - B|| = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$$

Ejemplo 1.1

Sean A = (1,1) y B = (5,3). Entonces,

$$d(A,B) = ||A - B|| = \sqrt{(1-5)^2 + (1-3)^2} = \sqrt{20}$$

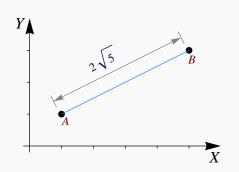


Figura 1.3: $||B - A|| = \sqrt{20}$

Punto Medio. El punto medio entre A y B es $M=\frac{A+B}{2}$. La distancia d(A,M) es d(A,M)=||A-B||/2. **Completar el cuadrado**. En el tema de cónicas es muy útil la "completación de cuadrados" pues nos permite reducir la ecuación $Ax^2+Cy^2+Dx+Ey+F=0$ a una ecuación más natural y con más información. Una manera de completar cuadrados es

$$ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

Sean A = (1,1) y B = (5,3). El punto medio es $M = \frac{(1+5,3+1)}{2} = (3,2)$.

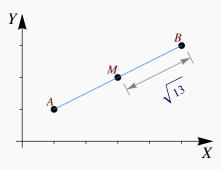


Figura 1.4: Punto medio M = (A + B)/2

Ejemplo 1.3

En cada caso, completar cuadrados

a.)
$$4x^2 - 8x$$

Solución:
$$4x^2 - 8x = 4\left(x + \frac{-8}{8}\right)^2 - \frac{(-8)^2}{4 \cdot 4}$$

$$=$$
 $4(x-1)^2-4$

b.)
$$v^2 + 4v - 8$$

Solución:
$$y^2 + 4y - 8 = \left(y + \frac{4}{2}\right)^2 - \frac{(4)^2}{4 \cdot 1} - 8$$

$$= (y+2)^2 - 12$$

Lugares geométricos. Formalmente, un "lugar geométrico" es el "rastro" o la "huella" que deja un punto que se mueve de acuerdo a una ley especificada. En lo que a nosotros concierne, usaremos esta definición: Un "lugar geométrico" es el conjunto de todos los puntos (usualmente los puntos de una curva o una superficie) que satisfacen algún criterio o propiedad.

Ahora vamos a describir las secciones cónicas a partir de su definición como un lugar geométrico y también usando la versión analítica. En este último caso, solo vamos a considerar cónicas en posición estándar (sin rotación). Hay una sección al final que describe el caso en que se presentan rotaciones.

Ejemplo 1.4 (Lugar geométrico).

Una circunferencia en el plano es el lugar geométrico de los puntos que equidistan de un punto O llamado "centro".

Nos interesa *la ecuación* de la curva que se forma: Una circunferencia de radio a está formada por todos los puntos (x,y) que están a una distancia "a" del centro O = (h,k). Entonces

$$||(x,y) - (h,k)|| = a \implies \sqrt{(x-h)^2 + (y-k)^2} = a$$

 $\implies (x-h)^2 + (y-k)^2 = a^2$

La ecuación $(x - h)^2 + (y - k)^2 = a^2$ es la versión "analítica" para una circunferencia de centro (h,k) y radio a.

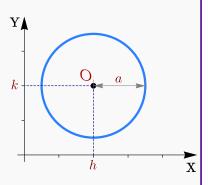


Figura 1.5: Lugar geométrico

1.3 Parábola

Definición 1.1 (Parábola).

En un plano, una parábola es el lugar geométrico de todos los puntos Q equidistantes de un punto fijo F (llamado foco) y de una recta fija ℓ (llamada directriz) que no contiene a F, es decir, $d(Q,F) = d(Q,\ell)$.

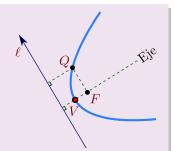


Figura 1.6: Parábola

prabola

Propiedad focal de la parábola: En Física, la ley de reflexión establece que si un rayo de luz ℓ_1 toca una superficie pulida m en un punto Q, este rayo es reflejado a lo largo de otra recta ℓ_2 de tal manera que si n es la recta normal a m en Q, el ángulo de incidencia α es igual al ángulo de reflexión β . Esta ley combina muy bien con la llamada "propiedad focal" de la parábola: La normal a la parábola en cualquier punto Q de la parábola forma ángulos iguales con el segmento FQ (que corresponde a ℓ_1) y la recta que pasa por Q y es paralela al eje de simetría de la parábola (que corresponde a ℓ_2).

Aplicaciones. Las antenas utilizadas preferentemente en las comunicaciones vía satélite son las antenas parabólicas. Las señales que inciden sobre su superficie se reflejan y alimentan el foco de la parábola, donde se encuentra el elemento receptor (también podría ser un elemento emisor). Son antenas parabólicas de foco primario.

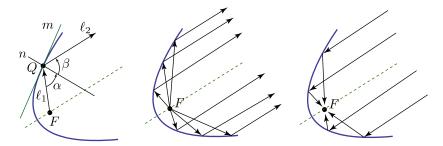
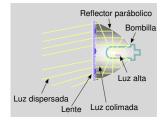


Figura 1.7: Propiedad focal de la parábola

Se usa también otro tipo de antena que no es redonda, sino oval y simétrica y se obtiene como un corte de la antena parábolica; el receptor queda en el punto focal, pero recibe alimentación a un lado (antena offset) del plato resultante del corte, esto se hace así para evitar eliminar la 'sombra' del receptor (con lo que el rendimiento es algo mayor que en la de foco primario).

La propiedad focal de la parábola también se usa para el diseño de los focos de los automóviles, en este caso se debe usar un lente para desviar la luz de tal manera que no afecte a los conductores que vienen de frente,



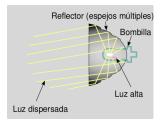
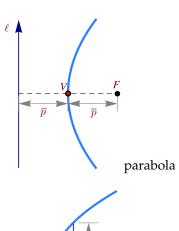
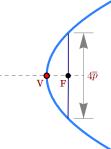


Tabla 1.1: Reflectores parábolicos (Wikipedia Commons)

Directriz, eje, vértice y foco. La recta que pasa por F y es perpendicular a L se llama "eje" o "eje de simetría". El punto de la parábola que está sobre este eje transversal se llama *vértice* y lo denotamos con V. Por la definición de la parábola, el vértice está a la misma distancia de la recta ℓ y del Foco. Esta distancia la denotamos con \overline{p}



Latus Rectum: El *latus rectum* de la parábola es la cuerda que pasa por el foco y es perpendicular al eje. La longitud del *latus rectum* es $4\overline{p}$.



1.3.1 Tratamiento analítico.

La versión analítica, en posición estándar, requiere colocar la directriz paralela al eje X o paralela al eje Y.

Directriz paralela al eje Y. Si la directriz es paralela al eje Y y si V = (h,k), entonces hay dos posibilidades: la parábola abre a la izquierda o abre a la derecha.

En el caso de que la parábola abre a la derecha, el foco es $F = (h + \overline{p}, k)$. Los puntos Q = (x, y) de la parábola satisfacen $d(Q, F) = d(Q, \ell)$, es decir,

$$\sqrt{(x-h-\overline{p})^2 + (y-k)^2} = x-h+\overline{p}$$
$$(x-h-\overline{p})^2 + (y-k)^2 = (x-h+\overline{p})^2$$
$$(y-k)^2 = 4\overline{p}(x-h)$$

Como $\overline{p} > 0$, entonces $x \ge h$ como se espera. Así, si la parábola abre hacia la derecha, su *ecuación canónica* es

$$(y-k)^2 = 4p(x-h)$$
 con $p > 0$.

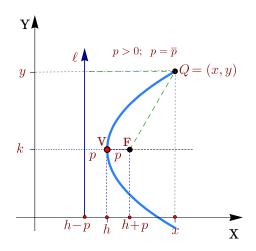


Figura 1.8: Parábola con directriz paralela al eje Y y p > 0

En el caso de que la parábola abra a la izquierda, el foco es $F = (h - \overline{p}, k)$. Los puntos Q = (x, y) de la parábola satisfacen d(Q, F) = d(Q, L). Procediendo como antes,

$$\sqrt{(x-h+\overline{p})^2+(y-k)^2} = x-h-\overline{p} \Longrightarrow (y-k)^2 = 4p(x-h) \text{ con } p=-\overline{p}.$$

Como $p = -\overline{p}$, el foco es F = (h + p,k) nuevamente.

En ambos casos, la ecuación simplificada es $(y - k)^2 = 4p(x - h)$ donde $\overline{p} = |p|$. Con esta notación, si p > 0, la parábola abre a la derecha y si p < 0, la parábola abre a la izquierda. Esta ecuación es llamada *ecuación canónica* o *natural*. Esta ecuación es especial pues contiene la información del vértice, el foco y la directriz.

En resumen, si la directriz es paralela al eje Y y si el vértice es V = (h,k), la ecuación canónica es **Directriz paralela al eje** X. De manera análoga al caso anterior, si la directriz es paralela al eje X, entonces la ecuación canónica de la parábola es

$$(x-h)^2 = 4p(y-k)$$

de tal manera que si p > 0, la parábola abre hacia arriba y si p < 0, la parábola abre hacia abajo.

En resumen, si la directriz es paralela al eje X y si el vértice es V = (h,k), la ecuación canónica es

Parábola $(y-k)^2 = 4p(x-h)$

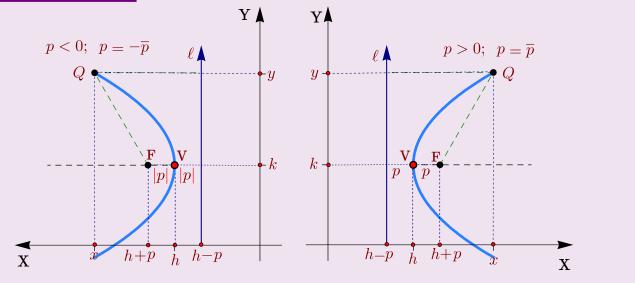
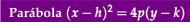


Figura 1.9: Parábola con directriz ℓ paralela al eje Y.



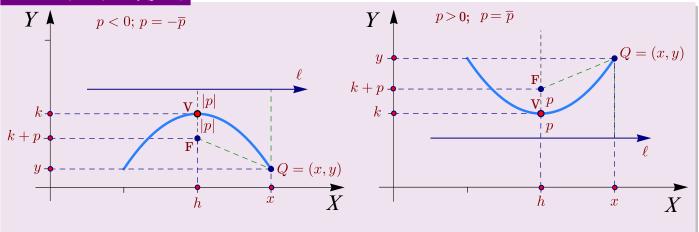


Figura 1.10: Parábola con eje paralelo al eje *X*.

Ecuación general de la parábola en posición estándar. La ecuación general de la parábola es de la forma $Cy^2 + Dx + Ey + F = 0$ con $C \neq 0$ y $D \neq 0$ o de la forma $Ax^2 + Dx + Ey + F = 0$ con $A \neq 0$ y $E \neq 0$. Completando el cuadrado obtenemos la ecuación canónica. También podríamos obtener el vértice, el foco y la ecuación de la directriz en términos de C,D,E y F.

Ejemplo 1.5

Verificar que el vértice de la parábola $y = ax^2 + bx + c$ es el punto $\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$.

Solución: Completando cuadrados obtenemos

$$ax^{2} + bx + c - y = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c - y$$
$$= a\left(x + \frac{b}{2a}\right)^{2} + \frac{-b^{2} + 4ac}{4a} - y.$$

Entonces, $ax^2 + bx + c - y = 0 \implies \left(x + \frac{b}{2a}\right)^2 = \frac{1}{a}\left(y + \frac{b^2 - 4ac}{4a}\right)$. Si $\Delta = b^2 - 4ac$ el vértice es $\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$.

Ejemplo 1.6

Hallar la ecuación canónica, el vértice, el foco y la directriz de la parábola cuya ecuación es $y^2 - 6y - 2x + 17 = 0$. Además realice la gráfica.

Solución: Para hallar la ecuación canónica debemos completar cuadrados.

$$y^{2} - 6y - 2x + 17 = 0$$

$$(y-3)^{2} - 9 - 2x + 17 = 0$$

$$(y-3)^{2} = 2(x-4)$$

El vértice es V=(4,3), por lo tanto, como $4p=2 \Rightarrow p=1/2>0$. La parábola abre hacia la derecha y tiene el foco en F=(4.5,3). La directriz es x=3.5. La gráfica se muestra en la figura.

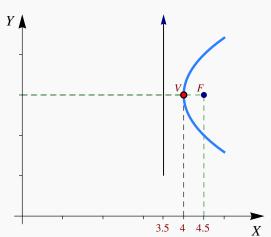


Figura 1.11: Parábola $(y-3)^2 = 2(x-4)$

Hallar la ecuación canónica de la parábola con vértice en (-2,4) y foco en (-2,3). Realizar la gráfica.

Solución: Dado que el vértice y el foco tienen igual abscisa, el eje de la parábola es vertical, además las distancia entre el foco y el vértice es |p|=1 y como abre hacia abajo, p=-1. Entonces la ecuación canónica es,

$$(x+2)^2 = -4(y-4)$$

La directriz es y = 5. La gráfica se muestra en la figura.

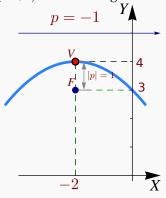
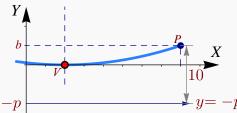


Figura 1.12: Parábola $(x+2)^2 = -4(y-4)$

Ejemplo 1.8

Determine la ecuación canónica y el foco de la parábola (o las parábolas) que satisfacen simultáneamente las siguientes condiciones

- **a.)** vértice en (2,0),
- **b.)** contiene al punto P = (8, b) con b > 0,
- **c.)** la distancia de *P* a la directriz es 10,
- **d.**) eje de simetría paralelo al eje Y.



Solución: De acuerdo a **d.)** la parábola abre hacia arriba o hacia abajo. Por la posición del vértice y el punto (8,b), solo podría abrir hacia arriba. El vértice es (h,k) = (2,0) por lo que lo que la ecuación de la parábola es

$$(x-2)^2 = 4p(y-0); p > 0.$$

La directriz es y = k - p = -p. Para determinar p y b tenemos dos datos

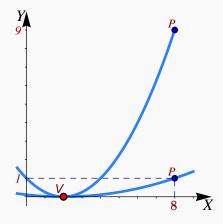
- La distancia de (8,b) a la directriz es 10, es decir b+p=10
- El punto (8,b) está en la parábola, es decir, $(8-2)^2 = 4p(b)$

Entonces tenemos

$$b = 10 - p$$

 $36 = 4pb \implies 36 = 4p(10 - p) \implies 36 - 40p + 4p^2 = 0$

Con lo que p=1 o p=9. Por lo tanto, las parábolas que cumplen estas condiciones son $(x-2)^2=4y$ (cuando b=1) o $(x-2)^2=36y$ (cuando b=9). Ambas parábolas se muestran en la figura de la derecha.

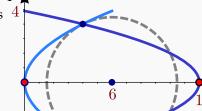


11

Hallar las parábolas que contienen los puntos (4,4), (4,-4) de la circunferencia $(x-6)^2 + y^2 = 20$ y la distancia de su vértice al centro de esta circunferencia es 6 unidades.

Solución: La situación, según los datos, es la que se presenta en la figura de la derecha. La ecuación es, en ambos casos, $(y - k)^2 = 4p(x - h)$.

• Si el vértice es (h,k) = (0,0): Como (4,4) está en la parábola, entonces 4



-4

$$(y-k)^2 = 4p(x-h) \implies 4^2 = 16p \implies p = 1.$$

La ecuación de la parábola es $y^2 = 4x$.

• Si el vértice es (h,k) = (12,0): Como (4,4) está en la parábola, entonces

$$y^2 = 4p(x - 12) \implies 4^2 = 4p(-8) \implies p = -1/2$$

La ecuación de la parábola es $y^2 = -2(x - 12)$

EJERCICIOS

- **1.1** Determine la ecuación canónica de la parábola $y = 2x^2 4x + 1$.
- **1.2** Determine la ecuación canónica de la parábola con vértice en (1,3) y foco en (2,3).
- 1.3 Determine la ecuación canónica de la parábola con eje paralelo al eje X y que pasa por los puntos (0,0), (-1,2), (-2,-2)
- 1.4 Hay tres parábolas que satisfacen simultáneamente las siguientes condiciones
 - a) vértice en (2,0), b) contiene al punto P=(b,8) con b>2, c) la distancia de P a la directriz es 10.

Determine la ecuación canónica de cada una de estas parábolas y el valor de $\it b$ en cada caso.

1.5 Determine la ecuación canónica de las siguientes parábolas,

a)
$$-9y^2 - 8x - 3 = 0$$

b)
$$y^2 + 2y - 4x = 7$$

c)
$$x^2 + 2x - 2y + 5 = 0$$

d)
$$x^2 - y + 2 = 0$$

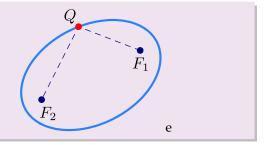
- **1.6** Determine la ecuación canónica de la parábola con vértice en (-1,1) y directriz y = 0.
- **1.7** Determine la ecuación canónica de la parábola con foco en (3,4) y directriz x = 7.
- **1.8** Determine la ecuación canónica de la parábola con vértice en (2,3), eje paralelo al eje Y y que pasa por el punto (4,5).

1.4 Elipse

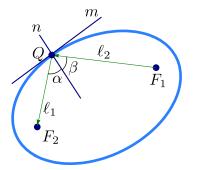
Definición 1.2 (Lugar geométrico).

En un plano, una elipse es el lugar geométrico de todos los puntos Q cuya suma de distancias a dos puntos fijos, F_1 y F_2 , (llamados focos), es constante (una constante mayor que $d(F_1, F_2)$). Si la suma es la constante 2a, con $2a > d(F_1, F_2)$, entonces

$$d(Q, F_1) + d(Q, F_2) = 2a$$



Propiedad focal de la elipse. La elipse también tiene una "propiedad focal" análoga a la de la parábola: *La normal a la elipse en cualquier punto Q de la elipse forma ángulos iguales con el segmento F_1Q y el segmento F_2Q*



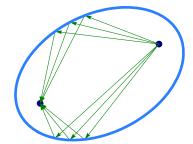
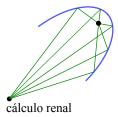
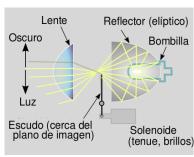


Figura 1.13

Esta propiedad se usa por ejemplo en medicina para tratar cálculos ("piedras") que se forman en el riñón, vejiga y uréteres; con ondas de choque. La "litotricia extracorpórea" por ondas de choque consiste en la emisión de ondas desde un aparato emisor de ondas. El paciente se acuesta sobre una mesa y el emisor de ondas se acopla en un sistema reflector apropiado con forma elíptica, de tal manera que el emisor esté en un foco y el cálculo renal en el otro. De esta forma las ondas de choque (que casi no sufren pérdidas en agua y tejidos corporales) al reflejarse en la pared elíptica, inciden directamente en el cálculo.



Como en el caso de la parábola, también la propiedad focal de la elipse se usa para el diseño de focos para automóvil y de reflectores para las lámparas que vemos en el consultorio del dentista,

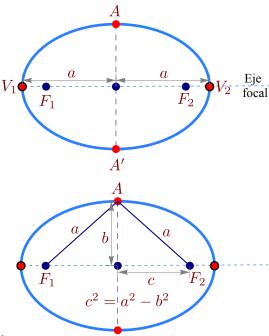


Lámpara de dentista

Ejes, centro y vértices. Supongamos que los focos de la elipse son F_1 y F_2 . Además, $d(Q,F_1)+d(Q,F_2)=2a$ con $2a>d(F_1,F_2)$. La recta que pasa por los focos se llama *eje focal*. Este eje focal corta a la elipse en dos puntos V_1 , V_2 llamados *vértices*. El segmento de recta que une los vértices se llama *eje mayor*. El punto en la mitad del eje mayor se llama *centro* de la elipse. El *eje normal* es el eje que pasa por el centro y es perpendicular al eje focal. Este eje normal corta a la elipse en dos puntos A y A'. El segmento que une estos dos puntos se llama *eje menor*.

De acuerdo a la definición de la elipse, la distancia entre los vértices es 2a y cada vértice está a una distancia de a unidades del centro.

Si la longitud del semieje menor es b, entonces como el triángulo $\triangle F_1 A F_2$ es isósceles, entonces $d(A, F_1) = a$ y se obtiene que la distancia de cada foco al centro es c con $c^2 = a^2 - b^2$.



Excentricidad. La excentricidad de la elipse se define como $e = \frac{c}{a}$ y describe la forma general de la elipse, además 0 < e < 1. Para una circunferencia la excentricidad es cero y valores cercanos a 1 corresponden a elipses más alargadas y achatadas (ver sección 1.6).

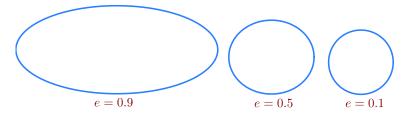
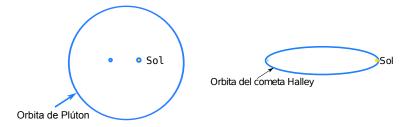
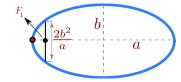


Figura 1.14: Excentricidad de la elipse

La excentricidad de las órbitas planetarias varían mucho en el sistema solar. La excentricidad de la tierra es 0.017 lo que la hace casi circular. La excentricidad de Plutón es 0.25 y es la más alta del sistema solar. La excentricidad del cometa Halley es 0.97 lo que hace que su órbita sea muy alargada, tanto que tarda 76 años en completar su órbita y la mayoría del tiempo permanece invisible para nosotros.



Lotus Rectum. Los *latus rectum* en la elipse corresponden a las cuerdas perpendiculares al eje focal y que pasan por cada uno de los focos. Si a es la longitud del semieje mayor y b es la longitud del semieje menor, la longitud de cada cuerda es $\frac{2b^2}{a}$



1.4.1 Tratamiento analítico.

La versión analítica, en posición estándar, requiere poner el eje mayor paralelo al eje X o paralelo al eje Y.

Eje mayor paralelo al eje Y. En este caso, si el centro es (h,k), entonces $F_1 = (h,k-c)$ y $F_2 = (h,k+c)$. Los puntos (x,y) de la elipse satisfacen

$$d((x,y),F_1) + d((x,y),F_2) = 2a,$$

es decir,

$$\sqrt{(x-h)^2 + (y-k+c)^2} + \sqrt{(x-h)^2 + (y-k-c)^2} = 2a$$

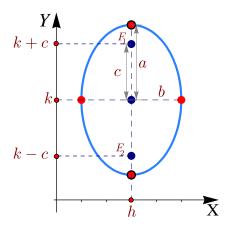


Figura 1.15: Elipse con eje mayor paralelo al eje *Y*

Ahora simplificamos la ecuación,

$$\left(\sqrt{(x-h)^2 + (y-k+c)^2}\right)^2 = \left(2a - \sqrt{(x-h)^2 + (y-k-c)^2}\right)^2$$

$$a^2 - c(y-k) = a\sqrt{(x-h)^2 + (y-k+c)^2},$$
elevamos al cuadrando,
$$a^4 + 2a^2c(y-k) + c^2(y-k)^2 = a^2(x-h)^2 + a^2(y-k)^2 + 2a^2c(y-k) + a^2c^2,$$
sustituyendo $c^2 = a^2 - b^2,$

$$-b^2(y-k)^2 = a^2(x-h)^2 - a^2b^2 \implies \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

La ecuación simplificada $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$, se le llama *ecuación canónica* o *natural*. Contiene toda la información para determinar la longitud de los semiejes, la longitud c, focos y vértices.

Eje mayor paralelo al eje X. En este caso, si el centro es (h,k), entonces $F_1 = (h - c,k)$ y $F_2 = (h + c,k)$. Los puntos (x,y) de la elipse satisfacen

$$d((x,y),F_1) + d((x,y),F_2) = 2a$$

es decir,

$$\sqrt{(x-h+c)^2 + (y-k)^2} + \sqrt{(x-h-c)^2 + (y-k)^2} = 2a.$$

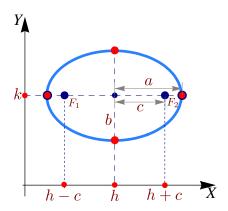
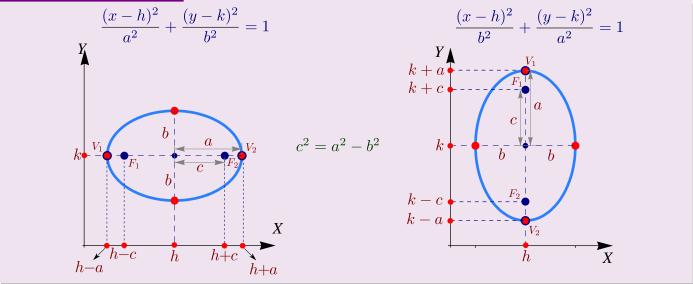


Figura 1.16: Elipse con eje mayor paralelo al eje *X*

Como antes, la ecuación simplificada queda $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$. A esta ecuación se le llama *ecuación canónica* o *natural*. Contiene toda la información para determinar la longitud de los semiejes, c, focos y vértices.

En resumen,

Elipse sin rotación. Si $a \ge b$,



Circunferencia de radio a. Formalmente, la curva que delimita un círculo se llama *circunferencia*. Por abuso del lenguaje se habla de un "círculo de radio a". La circunferencia es un caso especial de elipse en la que los focos son iguales y coinciden con el centro de la circunferencia. En este caso, $a^2 = b^2 = a^2$. Por lo tanto, la ecuación de la circunferencia de un círculo con centro en O = (h,k) y radio a, es

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{a^2} = 1$$
 o también $(x-h)^2 + (y-k)^2 = a^2$

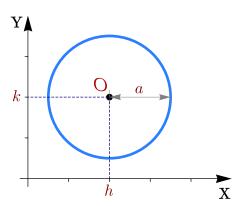


Figura 1.17: Circunferencia $(x - h)^2 + (y - k)^2 = a^2$

Ecuación general de la elipse en posición estándar. La ecuación general de un elipse con eje mayor paralelo al eje X o al eje Y es $Ax^2 + Cy^2 + Dx + Ey + F = 0$, con A y C no nulos y del mismo signo. Sin embargo, esta ecuación también podría tener como conjunto solución una cónica degenerada. *Si la ecuación corresponde a una cónica propia*, basta con que AC > 0 para decir que es una elipse. La manera práctica de decidir si es una elipse es obtener la ecuación canónica completando cuadrados. El estudio de la ecuación general se hace en la sección (1.8).

Hallar la ecuación canónica de la elipse $4x^2 + y^2 - 8x + 4y - 8 = 0$. Realizar su gráfica identificando los vértices, los focos y el centro.

Solución: Para hallar la ecuación canónica debemos completar el cuadrado de la expresión en ambas variables x e y.

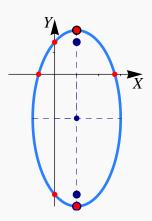
$$4x^{2} + y^{2} - 8x + 4y - 8 = 0$$

$$4x^{2} - 8x + y^{2} + 4y - 8 = 0$$

$$4(x - 1)^{2} + (y + 2)^{2} = 16$$

$$\frac{(x - 1)^{2}}{4} + \frac{(y + 2)^{2}}{16} = 1$$

El centro es (h,k)=(1,-2). La elipse tiene eje mayor paralelo al eje Y. Como $a^2=16$ y $b^2=4$, entonces a=4 y b=2. Ahora, $c^2=16-4 \implies c=\sqrt{12}$. Los focos son $(1,-2\pm\sqrt{12})$ y los vértices son (1,-6), (1,2). Las intersecciones con los ejes son $y\approx -5.46$, $y\approx 1.46$, $x\approx -0.73$ y $x\approx 2.73$.



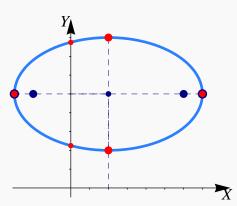
Ejemplo 1.11

Determine la ecuación canónica y las características más importantes de la elipse cuyo eje mayor tiene extremos (-3,5) y (7,5) y cuyo eje menor tiene extremos (2,2) y (2,8).

Solución: El centro es el punto medio entre (-3,5) y (7,5), es decir, (2,5). El semieje mayor mide a=5 y el semieje menor mide b=3. Como el eje mayor es paralelo al eje X, la ecuación canónica es,

$$\frac{(x-2)^2}{25} + \frac{(y-5)^2}{9} = 1.$$

Como $c^2=25-9$, entonces c=4 y los focos son $(2\pm 4,5)$. Los vértices son $(2\pm 5,5)$. Las intersecciones con el eje Y son $y\approx 2.25$ y $y\approx 7.75$.

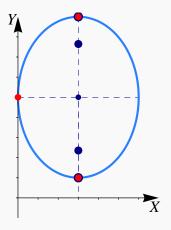


Determine la ecuación canónica de la elipse con vértices en (3,1), (3,9) y eje menor de longitud 6. Trazar la gráfica.

Solución: El eje mayor de la elipse es paralelo al eje Y. Como la longitud del eje menor es de 6 unidades, entonces b=3. Como los vértices están en (3,1) y (3,9), entonces el centro es (h,k)=(3,5) y por tanto a=4. La ecuación canónica es

$$\frac{(x-3)^2}{9} + \frac{(y-5)^2}{16} = 1$$

La gráfica de la elipse se muestra en la figura de la derecha. Solo hay una intersección con el eje Y en y = 5.



Ejemplo 1.13

Determine la ecuación canónica de la elipse con focos en (2,5) y (2,3) y que contiene al punto (3,6). Trazar la gráfica.

Solución: Por la posición de los focos, el eje mayor es paralelo al eje Y. Además también deducimos que el centro es (h,k)=(2,4) y que c=1. Como $c^2=a^2-b^2$, tenemos $b^2=a^2-1$.

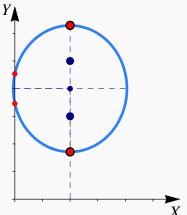
Hasta ahora tenemos que la ecuación canónica es

$$\frac{(x-2)^2}{b^2} + \frac{(y-4)^2}{a^2} = 1$$

Como $b^2 = a^2 - 1$ y como (3,6) satisface esta ecuación,

$$\frac{(3-2)^2}{b^2} + \frac{(6-4)^2}{a^2} = 1,$$

$$\frac{1}{a^2 - 1} + \frac{4}{a^2} = 1 \implies a^2 = 3 \pm \sqrt{5}.$$



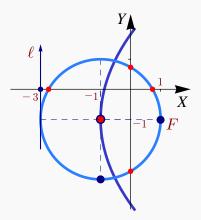
Como $b^2 = a^2 - 1 > 0$, la única solución es $\frac{(x-2)^2}{2+\sqrt{5}} + \frac{(y-4)^2}{3+\sqrt{5}} = 1$. Las intersecciones con el eje Y son $y \approx 3.46$, $y \approx 4.54$.

Determine la ecuación de la circunferencia de radio 2 con centro en el vértice de la parábola de foco (1,-1) y directriz x = -3. Realizar la gráfica.

Solución: Como el vértice de una parábola está a la mitad del camino entre el foco y la directriz entonces (h,k) = (-1,-1). La ecuación de la circunferencia es

$$(x+1)^2 + (y+1)^2 = 4.$$

Las intersecciones con el eje X son $x \approx -2.73$ y $x \approx 0.73$. Las intersecciones con el eje Y son $y \approx -2.73$ y $y \approx 0.73$.



EJERCICIOS

En cada caso, obtener la ecuación canónica de la elipse.

a)
$$\frac{x^2}{16} + \frac{x}{2} + \frac{y^2}{4} + y + 1 = 0$$

a)
$$\frac{x^2}{16} + \frac{x}{2} + \frac{y^2}{4} + y + 1 = 0$$

b) $\frac{x^2}{4} + x + \frac{y^2}{16} + \frac{y}{2} + 1 = 0$

c)
$$x^2 + \frac{y^2}{2} - 2y + 1 = 0$$

1.10 Considere la cónica $4x^2 + y^2 - 16x - 6y + 21 = 0$. Trazar su gráfica identificando los vértices, los focos, el centro y la intersección con los ejes.

Determine la ecuación de la elipse cuyo centro está en el origen, contiene al punto (-1,3) y uno de sus vértices es (0,5). Trazar la gráfica.

1.12 Determinar la ecuación canónica de la elipse si se sabe que es tangente a los ejes en el primer cuadrante y uno de sus vértices es (8,2).

Determine la ecuación canónica y los demás elementos de la elipse con centro en (0,0), eje mayor horizontal y los puntos (3,1) y (4,0) están en la elipse.

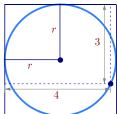
Determine la ecuación canónica y los demás elementos de la elipse con centro en (2,1), longitud del eje menor 2*ul* y eje mayor vertical y de longitud 6*ul*.

Hallar la ecuación canónica y los demás elementos de la elipse que tiene un vértice y un foco en común con la parábola $y^2 + 4x = 32$ y que tiene su otro foco en el origen.

Determine la ecuación canónica y los demás elementos de la elipse cuya suma de distancias a los puntos $(\pm 3,0)$ es 16.

Considere la cónica de ecuación $9y^2 + 16x^2 + 54y - 64x + 1 = 0$. Verifique que se trata de una elipse e indique sus características principales.

1.18 Se tiene un círculo inscrito en un cuadrado tal y como se muestra en la figura que sigue. Determinar el radio.



1.19 Determine la ecuación canónica de la elipse que satisface simultáneamente las siguientes condiciones:

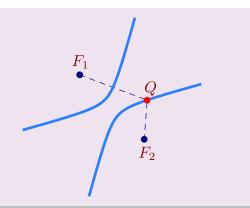
- a.) El vértice V_1 de la elipse coincide con el foco de la parábola de ecuación $(x-2)^2 = -4y + 24$.
- b.) El vértice V_2 de la elipse coincide con el centro de la hipérbola de ecuación $x^2 4x y^2 + 2y = -2$.
- c.) La elipse contiene el punto (1,2).

1.5 Hipérbola.

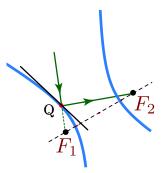
Definición 1.3 (Lugar geométrico).

En un plano, una hipérbola es el lugar geométrico de todos los puntos Q tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos del plano, F_1 y F_2 , (llamados focos), es constante (una constante menor que $d(F_1, F_2)$). Si la diferencia es la constante 2a, con $2a < d(F_1, F_2)$, entonces

$$|d(Q, F_1) - d(Q, F_2)| = 2a$$



Propiedad focal de la hipérbola. La hipérbola también tiene una "propiedad focal" análoga a la de la elipse y la parábola: La normal a la hipérbola en cualquier punto Q de la hipérbola, forma ángulos iguales con el segmento F_1Q y el segmentos F_2 , Q



La propiedad focal de la hipérbola tiene varias aplicaciones. Por ejemplo, en la construcción de telescopios. Un telescopio común tipo Cassegrain consiste de un espejo primario parabólico y de un espejo secundario hiperbólico. En la figura (1.18) la luz se refleja en un espejo primario parabólico y se desplaza hacia el foco F. Antes de llegar a este foco, hay un espejo hiperbólico en el camino, que comparte el foco F con la parábola. Este espejo refleja la luz al otro foco de la hipérbola, donde se encuentra el observado.

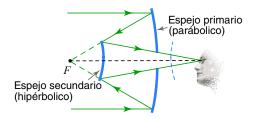


Figura 1.18: Telescopio Cassegrain.

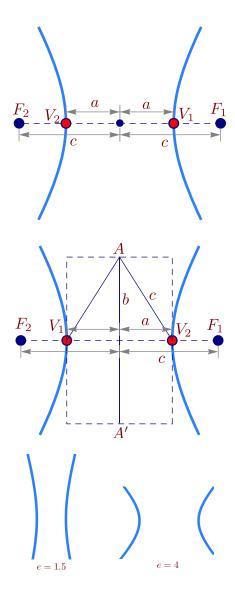
Ejes, centro y vértices. Supongamos que los focos de la hipérbola son F_1 y F_2 . Además, $|d(Q,F_1)-d(Q,F_2)|=2a$ con $2a>d(F_1,F_2)$. La recta que pasa por los focos se llama *eje focal*. Este eje focal corta a la hipérbola en dos puntos V_1 , V_2 llamados *vértices*. El segmento de recta que une los vértices se llama *eje transverso*. El punto medio de este eje se llama *centro* de la hipérbola.

De la definición de la hipérbola se puede deducir que la distancia entre los vértices es 2*a* y cada vértice está a una distancia de *a* unidades del centro.

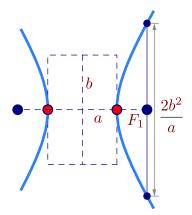
Si la distancia del centro a cada uno de los focos es c, como c > a, podemos formar el triángulo isósceles $\triangle V_1 V_2 A$ que se muestra en la figura de la derecha. La altura de este triángulo la denotamos con b. El eje conjugado es el segmento AA' (en la figura de la derecha) y mide 2b. Este segmento pasa por el centro y es perpendicular al eje focal. Claramente, este el semieje conjugado tiene longitud b y, por pitágoras,

$$c^2 = a^2 + b^2.$$

Excentricidad. La excentricidad de la hipérbola es $e = \frac{c}{a}$. En este caso, e > 1. Si $e \approx 1$, la ramas de la hipérbola son muy abiertas mientras que si e no está cerca de 1, las ramas abren poco y la hipérbola se muestra "achatada" (ver sección 1.6).



Latus Rectum. Los latus rectum en la hipérbola corresponden a las cuerdas perpendiculares al eje focal y que pasan por cada uno de los focos. Al igual que en la elipse, cada lado recto mide $2b^2$ а



1.5.1 Tratamiento analítico.

La versión analítica, en posición estándar, requiere poner el eje focal paralelo al eje X o paralelo al eje Y. **Eje mayor paralelo al eje** X. En este caso, si el centro es (h,k),

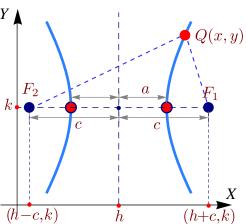
entonces $F_1 = (h - c, k)$ y $F_2 = (h - c, k)$. Los puntos Q = (x, y)de la hipérbola satisfacen

$$|d(Q, F_1) - d(Q, F_2)| = 2a$$

es decir,

$$\left| \sqrt{(x-h+c)^2 + (y-k)^2} - \sqrt{(x-h-c)^2 + (y-k)^2} \right| = 2a$$

Para simplificar un poco el cálculo, supongamos que $d(Q,F_1) - d(Q,F_2) > 0$ (el otro caso es es totalmente similar), entonces



$$\left(\sqrt{(x-h+c)^2+(y-k)^2}\right)^2 = \left(2a - \sqrt{(x-h-c)^2+(y-k)^2}\right)^2,$$

$$c(x-h) - a^2 = a\sqrt{(x-h-c)^2+(y-k)^2},$$
elevamos al cuadrado,
$$(c^2 - a^2)(x-h)^2 - a^2(y-k)^2 = a^2(c^2 - a^2),$$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{c^2 - a^2} = 1.$$

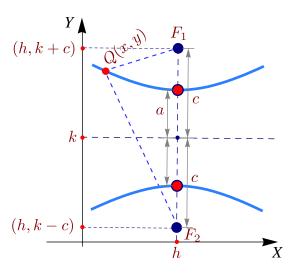
Poniendo $b^2 = c^2 - a^2$, la ecuación simplificada sería $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$; esta ecuación se le llama ecuación canónica o natural. Contiene toda la información para determinar la longitud de los semiejes, c, focos y vértices.

Eje mayor paralelo al eje Y. En este caso, si el centro es (h,k), entonces $F_1 = (h,k-c)$ y $F_2 = (h,k+c)$. Los puntos Q = (x,y) de la hipérbola satisfacen

$$|d(Q, F_1) - d(Q, F_2)| = 2a$$

es decir,

$$\left| \sqrt{(x-h)^2 + (y-k+c)^2} - \sqrt{(x-h)^2 + (y-k-c)^2} \right| = 2a.$$



Como antes, la ecuación simplificada queda $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$. A esta ecuación se le llama *ecuación canónica* o *natural*. Contiene toda la información para determinar la longitud de los semiejes, c, focos y vértices.

Asíntotas de la hipérbola. Consideremos las ecuaciones canónicas de la hipérbola. Despejando y en cada caso, se obtiene

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \implies y = k \pm \frac{a}{b} \sqrt{(x-h)^2 + b^2},$$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \implies y = k \pm \frac{b}{a} \sqrt{(x-h)^2 - a^2}.$$

Si x es suficientemente grande, se pueden despreciar las constantes que suman o restan, es decir,

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \implies y \approx k \pm \frac{a}{b}(x-h),$$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \implies y \approx k \pm \frac{b}{a}(x-h).$$

Esto sugiere que las rectas $y = k \pm \frac{a}{b}(x - h)$, $y = k \pm \frac{b}{a}(x - h)$ son asíntotas oblicuas de la hipérbola correspondiente. En efecto, un cálculo rápido nos permite establecer que

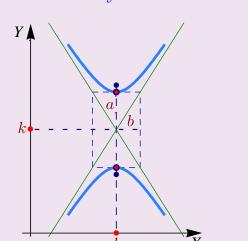
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \implies \lim_{x \to \pm \infty} y - \left(k \pm \frac{a}{b}(x-h)\right) = 0,$$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \quad \Longrightarrow \quad \lim_{x \to \pm \infty} y - \left(k \pm \frac{b}{a}(x-h)\right) = 0.$$

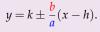
Teorema 1.1 (Asíntotas de la hipérbola).

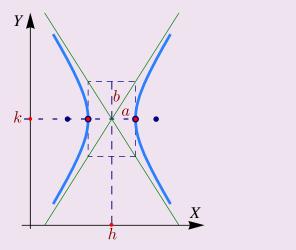
La hipérbola de ecuación $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ tiene asíntotas

$$y = k \pm \frac{a}{h}(x - h).$$



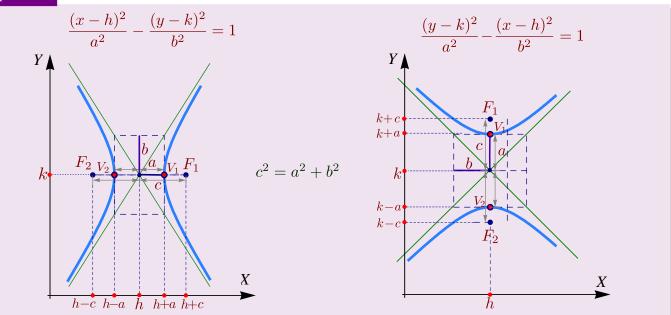
La hipérbola de ecuación $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ tiene asíntotas





En resumen,

Hipérbolas.



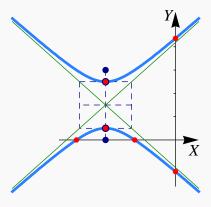
Ecuación general de la hipérbola en posición estándar. La ecuación general de una hipérbola con eje focal paralelo al eje X o al eje Y es $Ax^2 + Cy^2 + Dx + Ey + F = 0$, con A y C no nulos y de diferente signo. Sin embargo, esta ecuación puede también corresponder a una cónica degenerada. Si la ecuación corresponde a una cónica propia, basta con que AC < 0 para decir que es una hipérbola. La manera práctica de decidir si es una hipérbola es obtener la ecuación canónica completando cuadrados. El estudio de la ecuación general se hace en la sección (1.8).

Determine la ecuación canónica y las características de la cónica que contiene a los puntos P = (x,y) para los cuales |d(P,A) - d(P,B)| = 2 donde A = (-3,0) y B = (-3,3). Realizar la gráfica.

Solución: Se trata de un hipérbola con focos A y B y por tanto c = 1.5 y el centro es (h,k) = (-3,3/2). Como $|d(P,F_1) - d(P,F_2)| = 2a$ entonces a = 1. y entonces $b^2 = 5/4$. Luego ecuación canónica es

$$\frac{(y-\frac{3}{2})^2}{1} - \frac{(x+3)^2}{5/4} = 1$$

Las asíntotas son $y=\pm\frac{1}{\sqrt{5/4}}(x+3)+3/2$. La intersección con los ejes son $y\approx -1.363$, $y\approx 4.363$, $x\approx -4.25$ y $x\approx -1.75$,



Ejemplo 1.16

Hallar la ecuación canónica, los focos, los vértices y las asíntotas de la hipérbola cuya ecuación es $9x^2 - y^2 - 36x - 6y + 18 = 0$. Realizar la gráfica.

Solución: Completando el cuadrado en ambas variables,

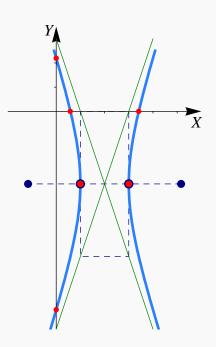
$$9(x^{2}-4x+4-4) - (y^{2}+6y+9-9) + 18 = 0$$

$$9(x-2)^{2} - (y+3)^{2} = 9$$

$$\frac{(x-2)^{2}}{1} - \frac{(y+3)^{2}}{9} = 1$$

Por tanto, el centro está en (2,-3), a=1, b=3 y $c^2=a^2+b^2 \implies c^2=10 \implies c=\sqrt{10}$

Los vértices están en (1,-3), (3,-3), los focos en $(2\pm\sqrt{10},-3)$ y las asíntotas son $y=\pm 3(x-2)-3$. Las intersecciones con los ejes son $y\approx -8.19$, $y\approx 2.196$, $x\approx 0.58$ y $x\approx 3.41$.



Identifique y trace la gráfica de la cónica de ecuación $4y^2 - 9x^2 + 36x - 24y - 36 = 0$, indicando centro, vértices, focos, asíntotas e intersección con los ejes.

Solución: Completando cuadrados obtenemos

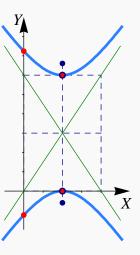
$$4(y-3)^2 - 9(x-2)^2 = 36$$

por lo que la ecuación canónica es

$$\frac{(y-3)^2}{9} - \frac{(x-2)^2}{4} = 1$$

Se trata de un hipérbola con eje transversal vertical y centro en (2,3). Como a=3 y b=2 entonces $c=\sqrt{13}$. Los vértices son $v_1=(2,0)$ y $v_2=(2,6)$ y los focos son $F_1=(2,-\sqrt{13})$ y $F_2=(2+6+\sqrt{13})$.

Las intersecciones con los ejes son $y \approx -1.24$, $y \approx 7.24$ y x = 2.



Ejemplo 1.18

Hallar la ecuación canónica de la hipérbola con vértices en (3,-5) y (3,1) y asíntotas y=2x-8 y y=-2x+4. Además calcule los focos y realice la gráfica.

Solución: Como los vértices son vértices en (3,-5) y (3,1), el centro es (3,-2). Además, la hipérbola tiene eje transversal vertical y a=3. Por otro lado, por el teorema de las asíntotas,

$$m_1 = 2 = \frac{a}{b} \implies b = \frac{a}{2} \implies b = \frac{3}{2}$$

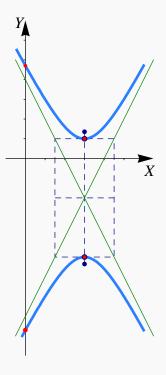
Por tanto, la ecuación canónica es

$$\frac{(y+2)^2}{9} - \frac{(x-3)^2}{\frac{9}{4}} = 1$$

El valor de *c* está dado por

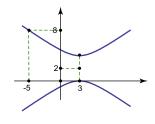
$$c^2 = a^2 + b^2 \Longrightarrow c^2 = \frac{45}{4} \Longrightarrow c = \frac{3\sqrt{5}}{2}$$

Los focos están en $(3,-2-\frac{3\sqrt{5}}{2})$ y $(3,-2+\frac{3\sqrt{5}}{2})$. Las intersecciones con el eje Y son $y\approx -8.70,\ y\approx 4.70$.



EJERCICIOS

1.20 Considere la hipérbola de la figura a la derecha. Determine su ecuación canónica.



- **1.21** Determine la ecuación canónica y los demás elementos de la hipérbola $36x^2 64y^2 = 2304$
- **1.22** Determine la ecuación canónica de la hipérbola con focos en (1,4) y 1,-4 y con a=3.
- **1.23** Determine la ecuación canónica de la hipérbola con centro en (-4,1) y un vértice en (2,1) y semieje conjugado de longitud 4.
- **1.24** Determine la ecuación canónica de la hipérbola de ecuación $9x^2 16y^2 18x 64y 199 = 0$.
- **1.25** Determine la ecuación canónica de la hipérbola con vértices en (0,2) y (6,2) y asíntotas $y = 2/3x + 4 \land y = 4 2/3x$.
- **1.26** Determine la ecuación canónica de la hipérbola que contiene al punto (4,6) y cuyas asíntotas son $y = \pm \sqrt{3}x$.
- 1.27 Determine la ecuación de la hipérbola con centro en el origen y que contiene los puntos (3,1) y (9,5).
- 1.28 Determine la ecuación canónica de de la hipérbola que satisface simultáneamente las siguientes condiciones,
 - a) El centro de la hipérbola coincide con el vértice de la parábola de ecuación $y^2 2y + 8x + 17 = 0$.
 - **b)** Uno de sus focos se ubica en (3,1)
 - c) Uno de sus vértices se ubica en (1,1).

Realice la gráfica e indique sus principales características.

- **1.29** Determine el tipo de cónica representada por la ecuación $\frac{x^2}{k} + \frac{y^2}{k-16} = 1$ en los casos
 - a) Si k > 16
 - **b)** Si 0 < k < 16
 - c) Si k < 0
- **1.30** Realice el dibujo de la sección cónica de ecuación $9(x-1)^2 (y+1)^2 = 9$. Indique además todas sus características.

1.6 Excentricidad: Otra manera de definir las cónicas.

La parábola, la elipse y la hipérbola se pueden definir en términos de las distancias a un punto fijo y una recta dada. En un plano, consideremos una recta fija ℓ y un punto fijo F, no contenido en la recta; se llama "cónica" al lugar geométrico de un punto Q que se mueve en el plano de tal manera que la razón $\frac{d(Q,F)}{d(Q,\ell)}$ es siempre igual a una constante positiva, denotada con e. La recta ℓ se llama directriz y el punto F se llama foco. La constante $e = \frac{d(Q,F)}{d(Q,\ell)}$ se llama excentricidad de la cónica.

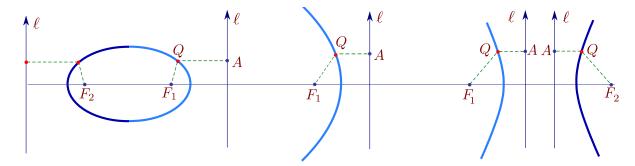


Figura 1.19

Para hacer el análisis sencillo, se puede ubicar la directriz en el eje Y y se puede tomar el foco en F = (s,0), con s > 0. Si Q = (x,y) está en el lugar geométrico, entonces si QA es el segmento perpendicular al eje Y, de debe cumplir

$$\frac{\overline{QF}}{\overline{OA}} = e,$$

que analíticamente corresponde a

$$\frac{\sqrt{(x-s)^2+y^2}}{|x|}=e.$$

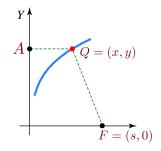


Figura 1.20

Simplificando se obtiene $(1 - e^2)x^2 - 2sx + y^2 + s^2 = 0$. Esta ecuación es la ecuación de una cónica, pero su naturaleza depende del valor de e.

- Si e = 1, obtenemos la parábola $y^2 = 2s(x s/2)$.
- Si $e \neq 1$, podemos dividir por $1 e^2$ y completar el cuadrado:

$$\frac{\left(x - \frac{s}{1 - e^2}\right)^2}{\frac{s^2 e^2}{(1 - e^2)^2}} + \frac{y^2}{\frac{s^2 e^2}{1 - e^2}} = 1.$$
(1.2)

Por tanto, si e > 1 entonces $1 - e^2 < 0$; y tenemos la hipérbola $\frac{\left(x - \frac{s}{1 - e^2}\right)^2}{\frac{s^2 e^2}{(1 - e^2)^2}} - \frac{y^2}{\frac{s^2 e^2}{e^2 - 1}} = 1$

con centro $(h,k) = \left(\frac{s}{1-e^2}, 0\right)$, $a^2 = \frac{s^2e^2}{(1-e^2)^2}$, y $b^2 = \frac{s^2e^2}{e^2-1}$. Como en la hipérbola $c^2 = a^2 + b^2$, tenemos en particular, $e = \frac{c}{a}$.

• Si e < 1, entonces $1 - e^2 > 0$ y la ecuación corresponde a una elipse. De manera análoga, se puede mostrar que $e = \frac{c}{a}$.

EJERCICIOS

En resumen, dada una recta ℓ y un punto fijo F que no está en ℓ , el lugar geométrico de los puntos Q del plano tales que el cociente de las distancias de Q a F y a ℓ es una constante, e, es

- a) una elipse si 0 < e < 1 (una circunferencia si e = 0),
- **b)** una parábola si e = 1 y
- c) una hipérbola si e > 1.

En general, si a es la longitud del semieje mayor en la elipse o la longitud del semieje transversal en la hipérbola, en ambos casos, la excentricidad es e=c/a; c se calcula como $c^2=a^2-b^2$ en la elipse y como $c^2=a^2+b^2$ en la hipérbola. En la parábola la excentricidad es siempre e=1.

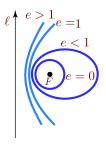


Figura 1.21

Ejemplo 1.19

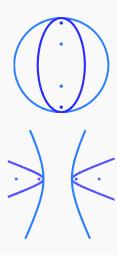
En este ejemplo consideramos cónicas con distinta excentricidad.

La elipse
$$\frac{(x-2)^2}{4} + \frac{(y-1)^2}{5} = 1$$
 (en celeste) tiene excentrici-

dad
$$e = \frac{c}{a} \approx 0.44$$
 mientras que la elipse $(x-2)^2 + \frac{(y-1)^2}{5} = 1$ (en violeta) tiene excentricidad $e = \frac{c}{a} \approx 0.89$. Como se observa,

si la excentricidad es ≈ 1 , la elipse se parece a una circunferencia.

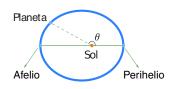
La hipérbola
$$\frac{(x-2)^2}{4}-(y-1)^2=1$$
 (en celeste) tiene excentricidad $e=\frac{c}{a}\approx 1.118$. La hipérbola $\frac{(x-2)^2}{4}-\frac{(y-1)^2}{30}=1$ (en violeta) tiene excentricidad $e=\frac{c}{a}\approx 2.91$. Se observa como una excentricidad grande hace que la hipérbola tenga ramas "estrechas".



- **1.31** Si ubicamos la directriz en el eje Y y el foco en F = (s,0), con s > 0, la ecuación de la cónica de excentricidad e es $(1 e^2)x^2 2sx + y^2 + s^2 = 0$.
 - a) Si e = 1, obtenemos una parábola. Indicar el vértice, foco y directriz.
 - **b)** Si e > 1, obtenemos una hipérbola. Indicar el centro y verificar que los focos son $F_i = (\pm ae, 0)$ y las directrices son $x = \pm \frac{a}{e}$. Obtener la ecuación de las asíntotas.
 - c) Si e < 1, obtenemos una elipse. Indicar el centro y focos.
- **1.32** Si e < 1, obtenemos una elipse. Muestre que $e = \frac{c}{a}$ donde a es la longitud del semieje mayor. Además verifique que los focos son $F_i = (\pm ae, 0)$ y las directrices son $x = \pm \frac{a}{e}$.
- **1.33** (Hipérbola rectangular) Verifique que si $e = \sqrt{2}$, entonces a = b. Obtener las asíntotas.

1.7 Ecuación polar de una cónica.

El matemático y astrónomo J. Kepler (1571-1630), sobre la base de una gran cantidad de datos obtenidos por Tycho Brahe (1546-1601) acerca del movimiento planetario (en particular de Marte), descubrió que la trayectoria de los planetas del sistema solar es elíptica, con el sol en uno de sus focos. En un principio Kepler pensaba que las orbitas debían ser circulares, una idea difícil de desechar dado que la excentricidad de la órbita de Marte es 0.093315 (casi una circunferencia!).



El *Afelio* es el punto más alejado de la órbita de un planeta alrededor del Sol. El *perihelio*, es el punto más cercano al Sol. Si a es la longitud del semieje mayor de la órbita elíptica y e la excentricidad, entonces en el afelio, la distancia del planeta al sol es r = a(1 + e) y en el perihelio la distancia del planeta al sol es a(1 - e). Para obtener estas distancias es conveniente expresar la ecuación de una elipse en términos del semieje mayor a y la excentricidad.

Para simplificar, supongamos que tenemos una cónica C con excentricidad e, un foco F en el origen y una directriz vertical ℓ a una distancia d a la derecha de F.

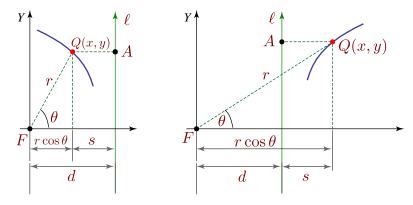


Figura 1.22

Como vimos en la sección anterior, se debe cumplir

$$\frac{\overline{QF}}{\overline{QA}} = e.$$

Si ponemos $s = \overline{QA}$ y $r = \overline{QF}$, entonces $s = |d - r\cos\theta|$ y $\frac{r}{|d - r\cos\theta|} = e$.

• Si Q(x,y) está a la izquierda de la directriz ℓ , entonces $s=d-r\cos\theta$, despejando r obtenemos

$$r = \frac{ed}{1 + e\cos\theta}$$

• Si Q(x,y) está a la derecha de la directriz ℓ , entonces $s=r\cos\theta-d$, despejando r obtenemos

$$r = \frac{ed}{e\cos\theta - 1}$$

En este caso, como r > 0, e > 0 y d > 0, se cumple $e \cos \theta > 1$ por lo que e > 1. Esto dice que solo las hipérbolas tienen puntos a la derecha de la directriz ℓ .

En resumen,

Teorema 1.2

Sea C una cónica con excentricidad e, un foco F en el origen y una directriz vertical ℓ a una distancia d a la derecha de F. Si $0 < e \le 1$, la cónica C es una elipse o una parábola; todo punto de C está a la izquierda de ℓ y satisface la ecuación polar

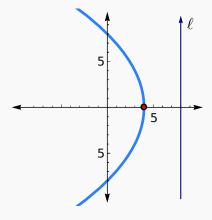
$$r = \frac{ed}{1 + e\cos\theta} \tag{1.3}$$

Si e > 1, la curva es una hipérbola con una rama a cada lado de ℓ . Los puntos de la rama de la izquierda satisfacen la ecuación (1.3) y los de la rama de la derecha satisfacen

$$r = \frac{ed}{e\cos\theta - 1} \tag{1.4}$$

Ejemplo 1.20

Considere la cónica con ecuación polar $r=\frac{8}{1+\cos\theta}$. Como e=1, se trata de una parábola. El foco está, por supuesto, en el origen. La directriz está a la derecha del foco y tiene ecuación x = 8. El vértice es V = (4,0).



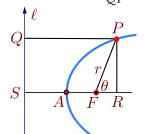
En Wolfram Mathematica se puede hacer la representación gráfica usando PolarPlot. El código del ejemplo anterior es,

Afelio y Perihelio. La ecuación de una elipse (0 < e < 1) con foco en el origen es $r = \frac{ed}{1 + e \cos \theta}$. Para calcular la distancia al sol en el Perihelio hacemos $\theta = 0$, es decir, $r = \frac{ed}{1+e}$. Para calcular calcular la distancia al sol en el Afelio hacemos $\theta = \pi$, es decir, $r = \frac{ed}{1-e}$. Como la suma de ambas distancias es 2a, entonces $2a = \frac{ed}{1+e} + \frac{ed}{1-e} \implies a = \frac{ed}{1+e} + \frac{ed}{1+e} = \frac{ed}{1+e} = \frac{ed}{1+e} + \frac{ed}{1+e} = \frac{$ $\frac{ed}{(1+e)(1-e)}. \text{ Así,}$

$$r = \frac{ed}{1+e} = a(1-e)$$
 y $r = \frac{ed}{1-e} = a(1+e)$.

EJERCICIOS

1.34 La cónica de la figura (a la derecha) tiene directriz ℓ , foco F y excentricidad e, es decir, $\frac{FP}{OP} = e$.



- a) Muestre que $\rho = e(2a + \rho \cos \theta)$ donde a = SA = AF.
- **b)** Muestre que $\rho = \frac{2ea}{1 e\cos\theta}$

1.8 Cónicas y la ecuación de segundo grado

Una cónica tiene ecuación general

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0. (1.5)$$

Sin embargo, hay casos en los que esta ecuación no tiene solución (no hay lugar geométrico) o el conjunto solución es una cónica degenerada (un punto, una o dos rectas).

Si B = 0, solo habría que completar cuadrados y si $B \neq 0$, habría que aplicar una rotación de ejes y y luego completar cuadrados. Con estos cálculos obtenemos la ecuación canónica de la cónica (en un nuevo sistema X'Y') y sus características más importantes (centro, vértice(s), etc.).

Usando la teoría de *invariantes* (ver apéndice A) podemos identificar la cónica, sin atender a sus elementos, directamente aplicando el siguiente teorema,

Teorema 1.3

Consideremos la ecuación general $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. Entonces,

a) si
$$B^2-4AC=0$$
 y $4ACF+BDE-AE^2-CD^2-FB^2\neq 0$, tenemos una parábola,

b) si
$$B^2 - 4AC < 0$$
 y $(A + C)(4ACF + BDE - AE^2 - CD^2 - FB^2) < 0$, tenemos una elipse,

c) si
$$B^2-4AC>0$$
 y $4ACF+BDE-AE^2-CD^2-FB^2\neq 0$, tenemos una hipérbola.

Si definitivamente se sabe que la ecuación general corresponde a una cónica propia, entonces

a) si
$$B^2 - 4AC = 0$$
, tenemos una parábola,

b) si
$$B^2 - 4AC < 0$$
, tenemos una elipse,

c) si
$$B^2 - 4AC > 0$$
, tenemos una hipérbola.

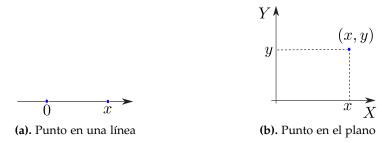
Una exposición más detallada se puede ver en el apéndice A.

Versión más reciente (y actualizaciones) de este libro:
http://www.tec-digital.itcr.ac.cr/revistamatematica/Libros/
http://dl.dropbox.com/u/57684129/revistamatematica/Libros/index.html

SUPERFICIES Y SÓLIDOS.

2.1 Espacio tridimensional. Coordenadas cartesianas.

Una vez que se ha especificado una unidad de medida, un número $x \in \mathbb{R}$ puede ser usado para representar un punto en una línea, un par $(x,y) \in \mathbb{R}^2$ se puede usar para representar un punto en un plano,



De manera análoga, un triple $(x,y,z) \in \mathbb{R}^3$ se puede usar para representar un punto en el espacio tridimensional. Tomamos un punto fijo cualquiera O, llamado origen, y tres planos distintos, mutuamente perpendiculares, que pasan por O. Los planos se intersecan en pares en tres rectas (ejes) mutuamente perpendiculares que pasan por O llamadas X, Y y Z. Para hacer la representación en un plano podemos trazar el eje Y y el eje Z de frente y la parte positiva del eje X se representa en una dirección aproximadamente sur-oeste, para simular profundidad (perpectiva). Dibujamos (x,y) en el plano XY y, desde este punto, dibujamos un segmento paralelo al eje Z y orientado de acuerdo al signo de z y de longitud |z|, como se muestra en la figura (b) de arriba. Si tiene conexión a Internet, puede hacer clic en la figura, esto lo llevará a una página Web con un 'applet' con el que se podrá hacer una idea más clara.

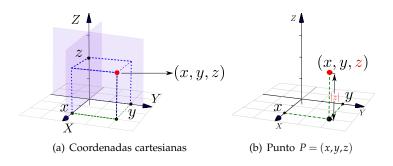


Figura 2.1: Puntos en el espacio tridimensional. En Internet, puede arrastrar los puntos rojos

Los puntos en el eje X tienen coordenadas (x,0,0), $x \in \mathbb{R}$, los puntos en el eje Y tienen coordenadas (0,y,0), $y \in \mathbb{R}$ y los puntos en el eje Z tienen coordenadas (0,0,z), $z \in \mathbb{R}$. En la figura que sigue se muestran cinco ejemplos de puntos en el espacio.

• Hacer clic en la figura para ver en 3D (en Internet)

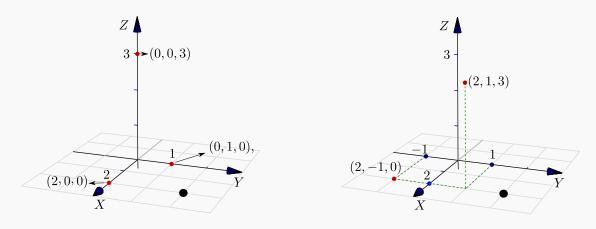
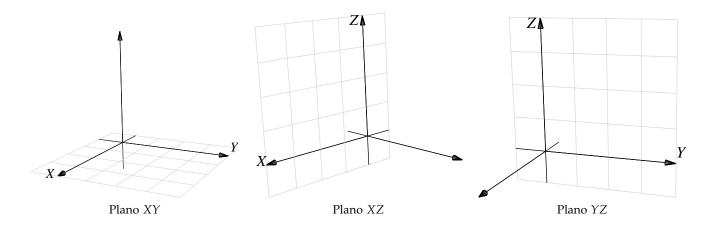


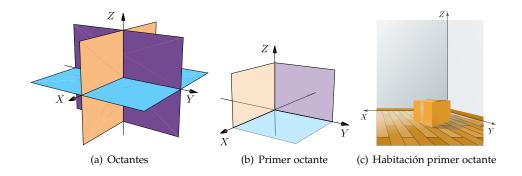
Figura 2.2: Puntos (2,0,0), (0,1,0), (0,0,3), (2,1,3) y (2,-1,0).

Planos XY, XZ **y** YZ. Los ejes coordenados determinan tres planos, el plano XY es el plano que contiene el eje X y el eje Y, el plano YZ es el plano que contiene el eje Y y el eje Y y el eje Y.



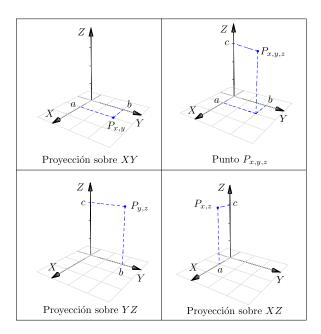
El primer octante. Los planos *XY*, *XZ* y *YZ* dividen el espacio en ocho partes llamadas *octantes*. El primer octante corresponde a la parte positiva de los ejes.

• Hacer clic en la figura para ver en 3D (en Internet)



Vistas isométricas de un punto. Considere el punto $P_{x,y,z} = (a,b,c)$ en el espacio tridimensional, se define *la vista* de este punto en el plano XY como el punto $P_{x,y} = (a,b,0)$. Análogamente se define la vista en el plano YZ como $P_{y,z} = (0,b,c)$ y la vista en el plano XZ como $P_{x,z} = (a,0,c)$.

Estas vistas también se denominan "proyecciones perpendiculares" del punto en el plano respectivo.



2.2 Funciones de dos variables

Una función de dos variables $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ con dominio $D \subseteq \mathbb{R}^2$, asigna a cada par $(x,y) \in D$, un único número real denotado con f(x,y). El gráfico de f es el conjunto $\{(x,y,z): x,y \in D \ y \ z = f(x,y)\}$.

El criterio (fórmula) que define a f puede ser explícito o implícito. Para hablar de una función de dos variables se escribe z = f(x,y) o F(x,y,z) = 0.

Ejemplo 2.2

- Forma explícita: $z = x^2 + y^2$ o equivalentemente $f(x,y) = x^2 + y^2$.
- Forma implícita: $\overbrace{z^2 + y^2 + z^2 1}^{F(x,y,z)} = 0$; $z \ge 0$.

La **representación gráfica** de f corresponde a la representación de todos los puntos (x,y,z) que satisfacen la ecuación z = f(x,y) o F(x,y,z) = 0.

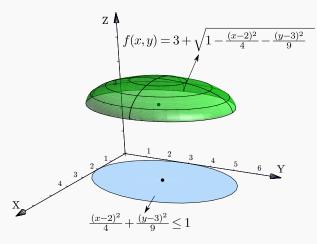
Como en funciones de una variable, el **dominio máximo** de f es el conjunto de puntos $(x,y) \in \mathbb{R}^2$ tal que z = f(x,y) este bien definida.

Ejemplo 2.3

Consideremos la función $f(x,y)=3+\sqrt{1-\frac{(x-2)^2}{4}-\frac{(y-3)^2}{9}}$. La función está bien definida si el subradical $1-(x-2)^2/4-(y-3)^2/9\geq 0$, entonces el dominio máximo de esta función es el conjunto

$$D_f = \{(x,y) : \frac{(x-2)^2}{4} + \frac{(y-3)^2}{9} \le 1\},$$

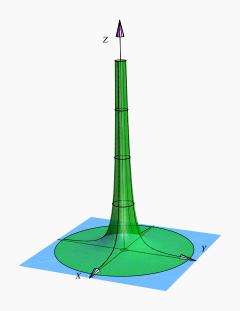
es decir, D_f es la región encerrada por la elipse $(x-2)^2/4+(y-3)^2/9=1$ (incluido el borde).



• Hacer clic en la figura para ver en 3D (en Internet)

La función $z=\frac{1}{x^2+y^2}$ solo se indefine en (0,0), entonces el dominio máximo de esta función es el conjunto

$$D_f = \mathbb{R}^2 - \{(0,0)\}.$$



Ejemplo 2.5

Consideremos la función $f(x,y) = 3 - (x-2)^2 - (y-2)^2$. Su dominio máximo es \mathbb{R}^2 . Frecuentemente hacemos la representación gráfica de f sobre un *dominio restringido*, por ejemplo sobre el conjunto $D = [1,3] \times [1,3]$,

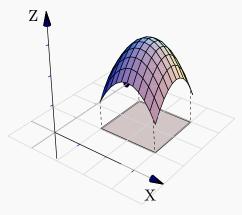
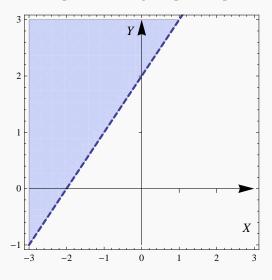


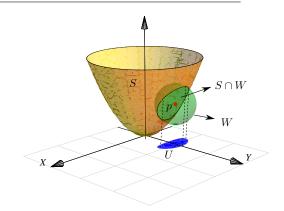
Figura 2.3: Función f restringida al un rectángulo $D = [1,3] \times [1,3]$

Consideremos la función $f(x,y) = \frac{2x+3}{\sqrt{y-x-2}}$. Su dominio máximo es $D_f = \{(x,y) \in \mathbb{R}^2 \text{ tq } y > x+2.\}$. La representación gráfica de este dominio corresponde a la región que está por encima de la recta y = x+2.



2.3 Superficies en \mathbb{R}^3

A veces se define una superficie de manera *local*. Una superficie S es un subconjunto de \mathbb{R}^3 que en un entorno de cualquiera de sus puntos, luce como un "parche" de \mathbb{R}^2 , es decir, para cada $p \in S$ existe un entorno abierto $U \subseteq \mathbb{R}^2$ y un entorno $W \subseteq \mathbb{R}^3$ que contiene a p tal que se puede establecer una biyección continua (homeomorfismo) $r_p: U \to S \cap W$. A cada homeomorfismo r_p se le llama "parche" o parametrización del conjunto abierto $S \cap W$. Una colección de tales parches que cubren S se llama un atlas de S.



Si una superficie S tiene ecuación z=f(x,y) con $(x,y)\in D\subseteq \mathbb{R}^2$, entonces la superficie sería de un solo "parche", y una parametrización sería $r(x,y)=x\,\hat{\imath}+y\,\hat{\jmath}+f(x,y)\,\hat{k}$ con $(x,y)\in D$. Más adelante veremos más ejemplos de superficies y parametrizaciones.

Nos interesan las superficies de ecuación z = f(x,y), es decir, las superficies formadas por los puntos (x,y,z) que satisfacen la ecuación z = f(x,y) o también en la forma F(x,y,z) = 0.

A veces decimos "superficie de ecuación (explícita) z = f(x,y)" o "superficie de ecuación (implícita) F(x,y,z) = 0". Como sugiere el ejemplo 2.5, un bosquejo de una superficie se puede hacer con un conjunto de curvas; a estas curvas se les llama 'trazas' o 'cortes verticales y horizontales'. En esta sección vamos a ocuparnos con superficies

simples: Planos, superficies cilíndricas y superficies cuádricas²

2.3.1 Curvas en el espacio.

Una manera de describir una curva en el plano XY es por medio de su ecuación cartesiana F(x,y) = c. Por ejemplo, una circunferencia de radio a tiene ecuación: $x^2 + y^2 = a^2$. Desde este punto de vista, una curva C definida por esta ecuación es un conjunto de puntos, a saber,

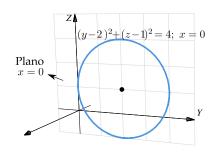
$$C = \{(x,y) \in \mathbb{R}^2 \mid F(x,y) = c\}$$

Las curvas en \mathbb{R}^3 podrían ser definidas por un par de ecuaciones (como intersección de dos superficies),

$$F_1(x,y,z) = c_1$$
; $F_2(x,y,z) = c_2$,

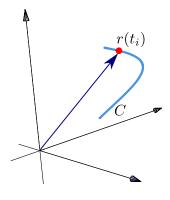
Por ejemplo, en el espacio tridimensional, una circunferencia centrada en (0,2,1) y de radio 2 en el plano YZ tendría ecuación

$$(y-2)^2 + (z-1)^2 = 2^2$$
; $x = 0$.



• Hacer clic en la figura para ver en 3D (en Internet)

Ecuación paramétrica. Otra manera de definir una curva es como el lugar geométrico de un punto en movimiento, r(t) es la posición del punto en el instante t. La curva es descrita por una función r(t) de parámetro t. Para curvas planas: $r: \mathbb{R} \to \mathbb{R}^2$, $r(t) = x(t) \hat{\imath} + y(t) \hat{\jmath}$. Para curvas en el espacio $r: \mathbb{R} \to \mathbb{R}^3$, $r(t) = x(t) \hat{\imath} + y(t) \hat{\jmath} + z(t) \hat{k}$.



²Un cono es una superficie si removemos el vértice.

En el espacio tridimensional, una circunferencia en el plano XY, de radio a y centrada en el origen se puede describir de varias maneras, por ejemplo,

- Ecuación cartesiana: $x^2 + y^2 = a^2$; z = 0.
- Una ecuación paramétrica:

$$r(t) = a \cos t \hat{\imath} + a \sin t \hat{\jmath} + 0 \cdot \hat{k}; \ t \in [0, 2\pi].$$

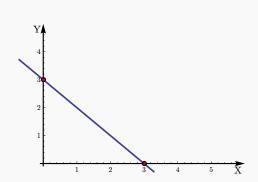
Curvas en los planos XY, XZ **y** YZ. En general, "F(x,y) = 0; z = 0" es la ecuación de una curva en el plano XY. De manera análoga, "F(x,z) = 0; y = 0" corresponde a una curva en el plano XZ y "F(y,z) = 0; x = 0" corresponde a una curva en el plano YZ.

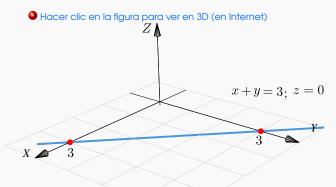
Ejemplo 2.8

Realizar la representación gráfica, en el espacio, de la curva $C_1: x+y=3; z=0$

Solución:

- La curva C: x + y = 3; z = 0, corresponde a una recta en el plano XY. Interseca al eje X en x = 3 y al eje Y en y = 3.
- Una parametrización es $C: r(t) = t \hat{\imath} + (3-t) \hat{\jmath} + 0 \cdot \hat{k}; t \in \mathbb{R}$



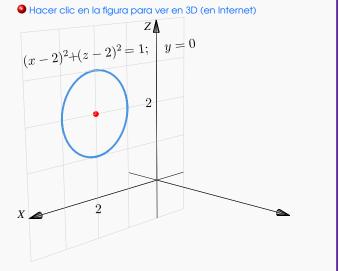


Realizar la representación gráfica, en el espacio, de la curva $C:(x-2)^2+(z-2)^2=1;y=0.$

Solución:

- La curva $C: (x-2)^2 + (z-2)^2 = 1$; y = 0 corresponde a una circunferencia de radio 1 en el plano XZ. Su centro es (2,0,2).
- Una parametrización es

$$C: r(t) = (2 + \cos t) \hat{i} + 0 \cdot \hat{j} + (2 + \sin t) \hat{k}; \ t \in [0, 2\pi]$$



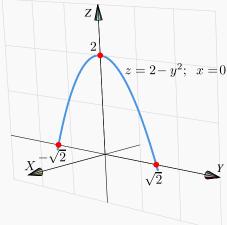
Ejemplo 2.10

Realizar la representación gráfica, en el espacio, de la curva $C_3: z=2-y^2; \ x=0.$

Solución:

- La curva C_3 es la parábola : $y^2 = -(z-2)$ (cóncava hacia abajo) en el plano YZ. El vértice es (0,0,2) e interseca al eje X en $x = \sqrt{2}$ y $x = -\sqrt{2}$.
- Una parametrización es

$$C: r(t) = 0 \cdot \hat{\imath} + t\hat{\jmath} + (2 - t^2)\hat{k}; \ t \in \mathbb{R}$$



EJERCICIOS (Curvas en el espacio)

2.1 Realizar la representación gráfica, en el espacio, de las curvas

a) $z = 4 - x^2$; y = 0.

b) $(z-2)^2 + (y-2)^2 = 4$; x = 0.

c) $\frac{(y-1)^2}{4} + x^2 = 1$; z = 0. d) z + 2y = 4; x = 0.

¿Es $(x-1)^2 + (y+2)^2 + z^2 = 0$ la ecuación de una curva?

2.3.2 Planos

Posiblemente los planos son las superficies más sencillas de dibujar. La ecuación cartesiana de un plano es ax + by + cz = d con con $a^2 + b^2 + c^2 \neq 0$ (se prohíbe el caso a = b = c = 0). Para realizar la representación gráfica de un plano Π nos basamos en el hecho de que si P,Q son dos puntos en este plano, entonces la recta (o cualquier segmento de ella) que contiene a estos puntos, está en el plano. En la práctica necesitamos al menos dos segmentos de recta para dibujar una parte del plano, mediante un triángulo o un paralelogramo.

Planos de ecuación cartesiana con dos variables ausentes.

La ausencia de variables en la ecuación solo significa que estas variables tienen coeficiente nulo y, por tanto, estas variables pueden tomar valores arbitrarios.

Por ejemplo el plano $\Pi: 0 \cdot x + 0 \cdot y + z = 2$ es el plano z = 2, es decir, $\Pi = \{(x, y, 2) : x, y \in \mathbb{R}\}$.

De aquí en adelante,

• El plano x = a es el plano $\Pi = \{(a, y, z) : y, z \in \mathbb{R}\}.$

• El plano y = b es el plano $\Pi = \{(x, b, z) : x, z \in \mathbb{R}\}.$

• El plano z = c es el plano $\Pi = \{(x, y, c) : x, y \in \mathbb{R}\}.$

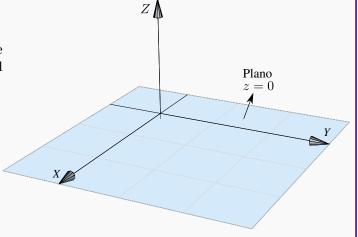
Ejemplo 2.11

• Hacer clic en la figura para ver en 3D (en Internet)

• El plano Π : z = 0 lo constituyen todos los puntos de la forma (x,y,0) con $x,y \in \mathbb{R}$ arbitrarios, es decir, el plano z = 0 es el plano XY.

Una parametrización es

 $\Pi : r(t,s) = t \, \hat{\imath} + s \, \hat{\jmath} + 0 \cdot \hat{k}, \quad (t,s) \in \mathbb{R} \times \mathbb{R}.$

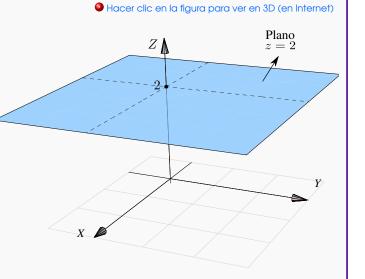


Dibujar el plano z = 2.

Solución:

- El plano z=2 lo constituyen todos los puntos de la forma (x,y,2) con $x,y \in \mathbb{R}$ arbitrarios, es decir, es un plano paralelo al plano XY que pasa por la coordenada z=2.
- Una parametrización es

$$\Pi : r(t,s) = t \, \hat{\imath} + s \, \hat{\jmath} + 2 \cdot \hat{k}, \quad (t,s) \in \mathbb{R} \times \mathbb{R}.$$



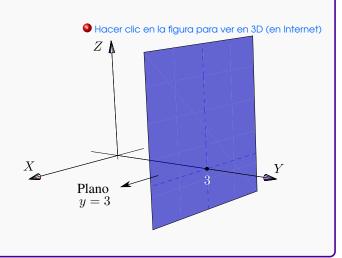
Ejemplo 2.13

Dibujar el plano y = 3.

Solución:

- El plano Π : y=3 lo constituyen todos los puntos de la forma (x,3,z) con $x,z\in\mathbb{R}$, es decir, es un plano paralelo al plano YZ que pasa por la coordenada y=3.
- Una parametrización es

$$\Pi: r(t,s) = t \, \widehat{\boldsymbol{\imath}} + 3 \cdot \widehat{\boldsymbol{\jmath}} + s \, \widehat{\boldsymbol{k}}, \quad (t,s) \in \mathbb{R} \times \mathbb{R}.$$



Planos de ecuación cartesiana con una variable ausente.

Cuando hay una variable ausente (*i.e.*, una variable con coeficiente nulo), el plano está 'generado' por la recta determinada por las variables presentes.

Dibujar el plano x + y = 2.

Solución:

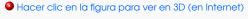
• El plano Π : x + y = 2 es el conjunto de puntos

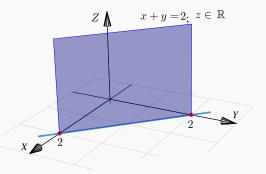
$$\{(x,y,z): x+y=2, z \in \mathbb{R}\}$$

Las coordenadas x e y están sobre la recta x+y=2 y la coordenada z es arbitraria.

Una parametrización es

$$\Pi: r(t,s) = t \, \hat{\imath} + (2-t) \, \hat{\jmath} + s \, \hat{k}, \quad (t,s) \in \mathbb{R} \times \mathbb{R}.$$





Planos de ecuación cartesiana sin variables ausentes. Podemos distinguir entre los que pasan por el origen y los que no.

Una forma sencilla para dibujar planos que *no* contienen el origen consiste en determinar la intersección del plano con cada eje coordenado y trazar los segmentos de recta que unen estos puntos. En caso necesario, se pueden extender dos de estos segmentos y formar un paralelogramo.

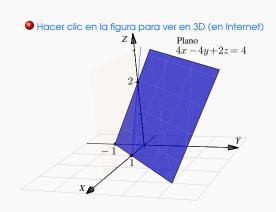
Ejemplo 2.15

Dibujar el plano 4x - 4y + 2z = 4

Solución:

- El plano interseca a los ejes coordenados en x = 1, y = -1 y z = 2. Podemos usar el segmento que va de x = 1 a y = -1 y el segmento que va dey = -1 a z = 2. Con estos dos segmentos podemos dibujar un paralelogramo.
- Como los puntos A = (1,0,0), B = (0,-1,0), C = (0,0,2) están en el plano, una parametrización es

$$\begin{split} \Pi : \, r(t,s) &= A + t \cdot (B-A) + s \cdot (C-A) \\ &= t \, \widehat{\boldsymbol{\imath}} + (t+s-1) \, \widehat{\boldsymbol{\jmath}} + 2s \, \widehat{\boldsymbol{k}}; \quad s,t \in \mathbb{R}. \end{split}$$



Para dibujar planos que contienen el origen se anula una de las variables y se dibuja una primera recta resultante en el plano correspondiente. Luego se anula otra variable y se dibuja una segunda recta en el plano correspondiente.

Tomamos dos segmentos, uno en cada recta y formamos un paralelogramo.

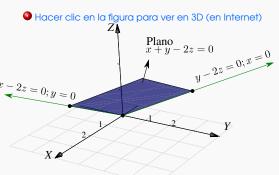
Ejemplo 2.16

Dibujar el plano x + y - 2z = 0.

Solución:

- Como el plano x + y 2z = 0 pasa por el origen, podemos usar un segmento de la recta x 2z = 0; y = 0 y un segmento de la recta y 2z = 0; x = 0, para dibujar un paralelogramo que represente al plano.
- Para obtener una parametrización, podemos usar los puntos del plano A = (3,0,1.5), B = (0,0,0), C = (0,3,1.5),

$$\begin{split} \Pi: \, r(t,s) &= A + t \cdot (B - A) + s \cdot (C - A) \\ &= 3t \, \widehat{\boldsymbol{\imath}} + 3s \, \widehat{\boldsymbol{\jmath}} + 1.5(s + t) \, \widehat{\boldsymbol{k}}; \quad s,t \in \mathbb{R}. \end{split}$$



EJERCICIOS (Planos)

2.3 Dibujar los planos

a)
$$2z + y = 2$$

b)
$$x = 2$$

c)
$$x - y - z = 0$$

d)
$$x + y - z = 2$$

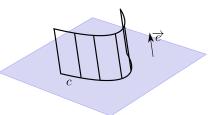
e)
$$2x + 2y + 2z = 2$$

2.4 Dibujar el plano 4x - 4y + 2z = 4 en el primer octante.

2.3.3 Superficies cilíndricas o "cilindros".

El término "cilindro" tiene varios significados relacionados y puede ser un concepto algo confuso. La palabra "cilindro" probablemente evoque la imagen de un cilindro circular recto, pero en cálculo en varias variables *un cilindro* (cilindro generalizado) se refiere a una superficie generada por una curva: Un cilindro es una superficie formada por una familia de rectas paralelas, llamadas *generatrices*, que pasan por los puntos respectivos de una cierta curva *directriz*. Si la directriz vive en un plano y si la generatriz es perpendicular a este plano, el cilindro se le dice "cilindro recto". Un cilindro es un caso particular de una superficie *reglada*.

En este libro solo se consideran cilindros (generalizados) de ecuación $r(t,s)=c(t)+s\cdot\overrightarrow{e}$; $t\in I$, $s\in\mathbb{R}$ donde c(t) es la parametrización de una curva que está en alguno de los plano XY, YZ o XZ y \overrightarrow{e} es un vector perpendicular al plano correspondiente.



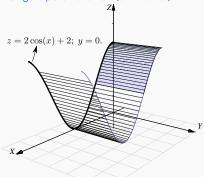
Es decir, en nuestro caso, las superficies con ecuación en *dos* de las tres variables x,y y z van a ser cilindros rectos, con línea generatriz paralela al eje asociado con la variable ausente. Por ejemplo, el cilindro de ecuación $z = 1 - x^2$ tiene generatriz paralela al eje Y mientras que el cilindro $y^2 + (z - 1)^2 = 1$ tiene generatriz paralela al eje X.

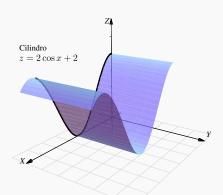
En este libro, la línea generatriz es el eje asociado a al variable ausente!

Ejemplo 2.17

Para dibujar el cilindro de ecuación $z=2\cos(x)+2$ primero deberíamos dibujar la curva de ecuación $z=2\cos(x)+2$; y=0. Luego, según nuestro convenio, la superficie cilíndrica $z=2\cos(x)+2$ tiene línea generatriz paralela al eje Y. Para obtener uan parametrización de esta superficie, tomamos x=t y $z=2\cos(x)+2$. y=s es libre. $r(t,s)=(t,s,2\cos t+2)$, $t,s\in\mathbb{R}$,

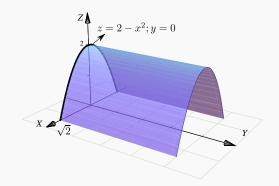
• Hacer clic en la figura para ver en 3D (en Internet)





Ejemplo 2.18

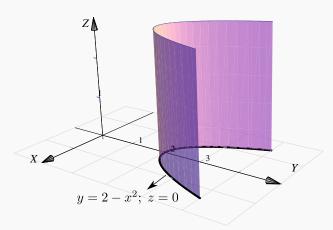
El cilindro de ecuación $z=2-x^2$ es una superficie cilíndrica generada por la curva $z=2-x^2$ con línea generatriz paralela al eje Y. Para obtener una parametrización de esta superficie, usamos la ecuación de la curva en el plano XZ, Tomanos x=t y $z=2-t^2$. La coordenada y=s es libre. $r(t,s)=(t,s,2-t^2)$, $t,s\in\mathbb{R}$.



Dibujar el cilindro de ecuación $y = x^2 + 2$.

Solución: La superficie cilíndrica generada por $y=x^2+2$ tiene su línea generatriz paralela al eje Z. Una parametrización de esta superficie es $r(t,s)=(t,\,t^2+2,\,s),\,t,s\in\mathbb{R}$. Aquí tomamos x=t y $y=t^2+2$. z=s es libre.

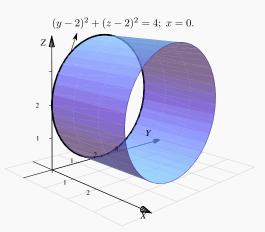
• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 2.20

Dibujar el cilindro de ecuación $(y-2)^2 + (z-2)^2 = 4$.

Solución: La superficie cilíndrica generada por la circunferencia $(y-2)^2+(z-2)^2=4$ tiene su línea generatriz paralela al eje X. Una parametrización de esta superficie es $r(t,s)=(2+2\cos t,s,2+2\sin t),\,t\in[0,2\pi],\,s\in\mathbb{R}$. La circunferencia en el plano XZ se parametriza con $x=2+2\cos t$ y $z=2+2\sin t$. y=s es libre.



2.4 Superficies cuadráticas.

Rotar una cónica (no degenerada) alrededor de su eje focal, por ejemplo, produce un caso especial de un conjunto más general de superficie llamadas *superficies de segundo orden*. Estas superficies satisfacen una ecuación de segundo grado en x; y y z y también son llamadas *superficies cuadráticas* o *cuádricas*.

La curva de intersección entre un plano y una superficie cuadrática es una cónica. Hay 17 tipos estándar de cuádricas, algunas de ellas son: paraboloide, esfera, esferoide, elipsoide, cono, hiperboloide, cilindro, cono elíptico, cilindro elíptico, hiperboloide elíptico, paraboloide elíptico, etc.

Aquí solo consideramos cuádricas en posición estándar (sin rotación). Estas superficies tienen ecuación

$$Ax^{2} + By^{2} + Cz^{2} + Dx + Ey + Fz + G = 0.$$

2.4.1 Curvas de nivel y trazas.

Si S es una superficie en el espacio de ecuación F(x,y,z)=0, todos los pares $(x,y)\in\mathbb{R}^2$ que satisfacen la ecuación F(x,y,c)=0 definen una curva en el plano XY (siempre y cuando este conjunto no sea vacío). A esta curva se le llama una *curva de nivel* de la superficie. Geometricamente corresponden a el corte del plano z=c sobre la superficie S.

También nos interesa dibujar la curva como una curva en el espacio. Por abuso del lenguaje se dice "la curva de nivel z = c" para indicar la curva de nivel "F(x,y,c) = 0; z = 0". A las curvas "F(x,y,c) = 0; z = c" (si existen) les llamamos 'trazas' o 'cortes' de la superficie.

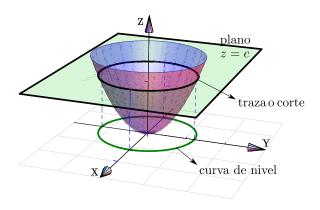


Figura 2.4: Traza o corte z = c y curva de nivel.

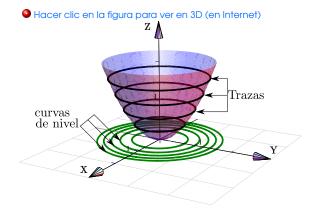


Figura 2.5: Algunas curvas de nivel y algunas trazas.

Como se deduce fácilmente, si nos movemos sobre una curva de nivel z = c, la función se mantiene constante.

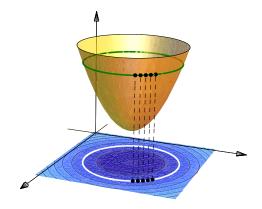
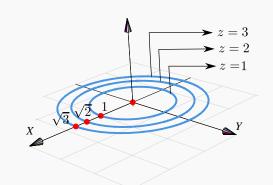


Figura 2.6: Sobre las curvas de nivel, la función es constante.

Consideremos la superficie de ecuación $z=x^2+y^2$. Como z es una suma de cuadrados, z debe ser ≥ 0 . Vamos a dibujar las curvas de nivel correspondientes a z=0,1,2 y z=3.

- La curva de nivel z = 0 es el punto (0,0,0)
- La curva de nivel z = 1: circunferencia $1 = x^2 + y^2$; z = 1.
- La curva de nivel z = 2: circunferencia $2 = x^2 + y^2$; z = 2.
- La curva de nivel z = 3: circunferencia $3 = x^2 + y^2$; z = 3.

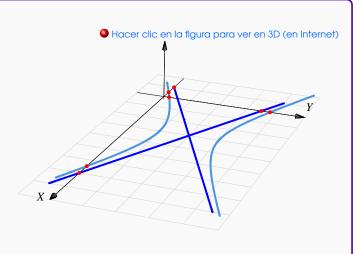
Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 2.22

Consideremos la superficie de ecuación $z=(y-2)^2-\frac{(x-3)^2}{4}$. Vamos a dibujar las curvas de nivel correspondientes a z=0,1.

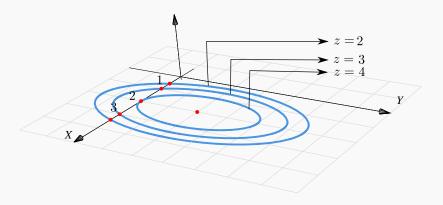
- Si z = 0 tenemos $(y 2)^2 = \frac{(x 3)^2}{4}$, es decir, un par de rectas: $y = 2 \pm \frac{(x 3)}{2}$; z = 0.
- La curva de nivel z=1 es la hipérbola $1=(y-2)^2-\frac{(x-3)^2}{4}; z=1.$



Consideremos la superficie de ecuación $z-1=(x-2)^2+\frac{(y-2)^2}{4}$. Dibujar las curvas de nivel correspondientes a z=1,2,3 y z=4.

Solución:

- La curva de nivel z = 1 es el punto (2,2,0).
- La curva de nivel z = 2 es la elipse $1 = (x 2)^2 + \frac{(y 2)^2}{4}$.
- La curva de nivel z = 3 es la elipse $2 = (x 2)^2 + \frac{(y 2)^2}{4}$, es decir, $1 = \frac{(x 2)^2}{2} + \frac{(y 2)^2}{8}$.
- La curva de nivel z = 4 es la elipse $3 = (x-2)^2 + \frac{(y-2)^2}{4}$, es decir, $1 = \frac{(x-2)^2}{3} + \frac{(y-2)^2}{12}$.
- Hacer clic en la figura para ver en 3D (en Internet)



Trazas o cortes. Con el fin de realizar el dibujo de una superficie S de ecuación explícita z = f(x,y) o de ecuación implícita F(x,y,z) = 0, procedemos a realizar cortes a esta superficie con planos paralelos a los planos coordenados. Estas curvas son llamadas *trazas o cortes* y producen un dibujo 'de alambre' de la superficie a dibujar.

Para describir las trazas por ecuaciones se procede de la siguiente manera:

- Si la traza resulta de la intersección de la superficie S con el plano x = c, entonces su ecuación es "z = f(c,y); x = c" o "F(c,y,z) = 0; x = c," y se representa en el plano x = c.
- Si la traza resulta de la intersección de la superficie S con el plano y = c, entonces su ecuación es "z = f(x,c); y = c" o "F(x,c,z) = 0; y = c," y se representa en el plano y = c.

• Si la traza resulta de la intersección de la superficie S con el plano z=c, entonces su ecuación es "c=f(x,y), z=c'' o "F(x,y,c)=0, z=c'' y se representa en el plano z=c.

Ejemplo 2.24

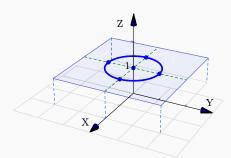
Consideremos la superficie de ecuación $z = x^2 + y^2$. Dibujar la traza z = 1.

Solución: La traza z = 1 es la circunferencia

$$1 = x^2 + y^2$$
; con $z = 1$.

La curva se representa en el plano z=1. Como la circunferencia vive en el plano z = 1, para dibujarla ubicamos su centro (0,0,1) y trazamos un par de rectas paralelas a los ejes X e Y que pasen por este punto, estas líneas las podemos usar como "semiejes" para dibujar este tipo de elipse.

• Hacer clic en la figura para ver en 3D (en Internet)



Estrategia general. Para dibujar trazas una estrategia consiste en trasladar los ejes al plano de dibujo: x = c; y = co z = c.

• Hacer clic en la figura para ver en 3D (en Internet)

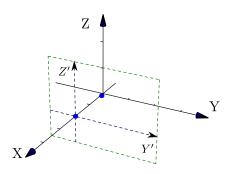


Figura 2.7: Traslación de ejes

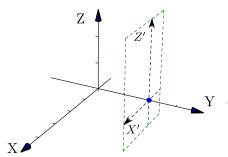


Figura 2.8: Traslación de ejes

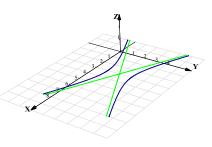


Figura 2.9: Traslación de ejes

Por ejemplo, consideremos la superficie S de ecuación $4(y-1)^2+4(z-1)^2=x^2$. La traza x=2 es la curva " $(y-1)^2 + (z-1)^2 = 1$; x = 2." Para dibujar la traza primero trasladamos los ejes al plano x = 2 (figura 2.10), luego dibujamos la curva en el plano YZ (figura 2.11), finalmente dibujamos la curva " $(y-1)^2 + (z-1)^2 = 1$; x=2" usando los ejes Y'Z' (figura 2.12).

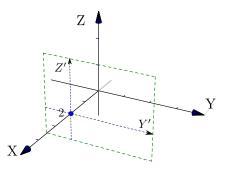


Figura 2.10: Traslación de ejes

Figura 2.11

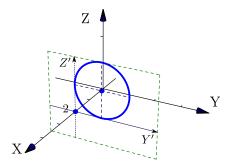


Figura 2.12: Traza x = 2

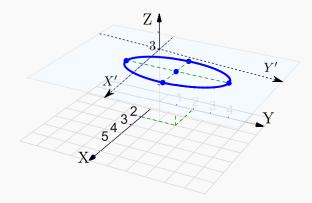
Consideremos la superficie de ecuación $z-1=(x-2)^2+\frac{(y-2)^2}{4}$. Dibujar la traza z=3.

Solución: La traza z = 3 es la elipse

$$1 = \frac{(x-2)^2}{2} + \frac{(y-2)^2}{8}$$
 en el plano $z = 3$.

Como la elipse vive en el plano z = 3, para dibujarla ubicamos su centro (2,2,3) y trazamos un par de semiejes X' y Y' paralelos a los ejes X e Y que pasen por este punto, estas líneas las podemos usar para dibujar la elipse de la manera usual.

• Hacer clic en la figura para ver en 3D (en Internet)

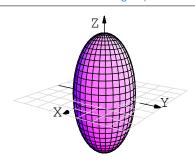


2.4.2 Cuádricas

Nos interesan las cuádricas de ecuación $Ax^2 + By^2 + Cz^2 + Dx + Ey + Fz + G = 0$. Excepto casos degenerados, completando cuadrados podemos obtener la ecuación canónica de cada superficie cuadrática. A continuación se muestra algunas cuádricas en posición estándar y centradas en el origen.

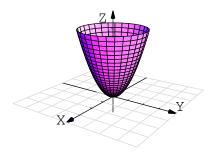
Elipsoide: Tiene ecuación
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Es simétrico con respecto a cada uno de los tres planos coordenados y tiene intersección con los ejes coordenados en $(\pm a,0,0)$, $(0,\pm b,0)$ y $(0,0,\pm c)$. La traza del elipsoide sobre cada uno de los planos coordenados es un único punto o una elipse.



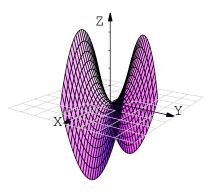
Paraboloide elíptico: Tiene ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$

Sus trazas sobre planos horizontales z=k son elipses: $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{k}{c}$. Sus trazas sobre planos verticales, ya sean x=k o y=k son parábolas.



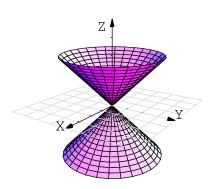
Paraboloide hiperbólico: Tiene ecuación $\frac{y^2}{b^2} - \frac{x^2}{a^2} = \frac{z}{c}$.

Sus trazas sobre planos horizontales z=k son hipérbolas o dos rectas (z=0). Sus trazas sobre planos verticales paralelos al plano x son parábolas que abren hacia abajo, mientras que las trazas sobre planos verticales paralelos al plano YZ son parábolas que abren hacia arriba. Su gráfica tiene la forma de una silla de montar.



Cono elíptico: Tiene ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$.

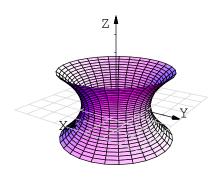
Sus trazas sobre planos horizontales z=k son elipses. Sus trazas sobre planos verticales corresponden a hipérbolas o un par de rectas.



Hiperboloide de una hoja: Tiene ecuación

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

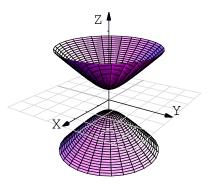
Sus trazas sobre planos horizontales z=k son elipses $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1+\frac{k^2}{c^2}$. Sus trazas sobre planos verticales son hipérbolas o un par de rectas que se intersecan.



Hiperboloide de dos hojas: Tiene ecuación

$$\frac{z^2}{a^2} - \frac{y^2}{h^2} - \frac{x^2}{c^2} = 1.$$

Es una superficie con dos *hojas* (o mantos) separadas. Sus trazas sobre planos horizontales z=k son elipses y sobre planos verticales son hipérbolas



Ejemplo 2.26

Considere la superficie $S: (y-2)^2 + 4(x-1)^2 = z$. Dibuje por separado las trazas obtenidas al intersecar S con los planos de ecuación y=2, x=1, z=0 y z=4, y dibuje la superficie.

Solución: Se trata de un parabolide elíptico.

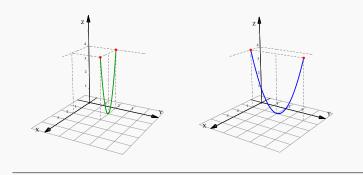
- La traza y = 2 cooresponde a la parábola $4(x-1)^2 = z$, y = 2.
- La traza x = 2 cooresponde a la parábola $(y 2)^2 = z$, x = 1.
- La traza z = 4 cooresponde a la elipse $(y-2)^2 + 4(x-1)^2 = 4$, z = 4.
- La traza z = 0 cooresponde al vértice del parabolide, (4,2,0).

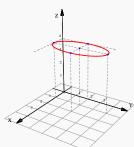
• Hacer clic en la figura para ver en 3D (en Internet)

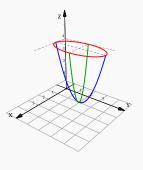
Traza y = 2

Traza x = 1

Traza z = 4





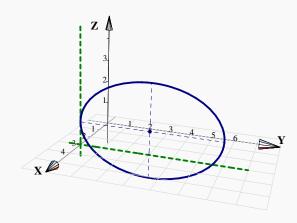


Identifique y dibuje la superficie cuadrática $\frac{(x-3)^2}{4} + \frac{(y-3)^2}{9} + \frac{(z-1)^2}{4} = 1$.

Solución: Se trata de un elipsoide con centro en (3,3,1). Una estrategia de dibujo es la siguiente: Los elipsoides se puede dibujar con tres elipses (trazas). En este caso, se pueden usar x = 3; y = 3 y z = 1 (estos valores corresponden al centro de la cuádrica).

• La traza x = 3 corresponde a la elipse $\frac{(y-3)^2}{9} + \frac{(z-1)^2}{4} = 1$, x = 3; que se dibuja en el plano x = 3.

• Hacer clic en la figura para ver en 3D (en Internet)

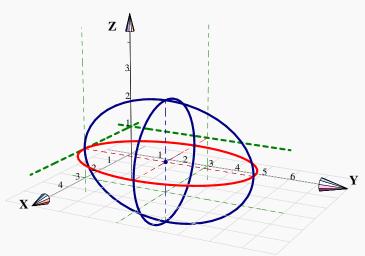


• Si y = 3 obtenemos la elipse (circunferencia) $(x - 3)^2 + (z - 1)^2 = 4$, y = 3; que se dibuja en el plano y = 3.

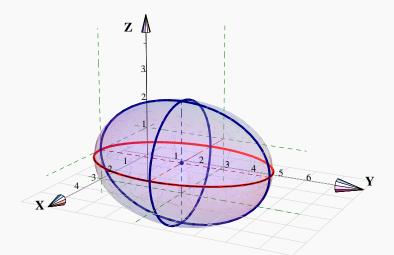


Ejemplo 2.27 (continuación).

- Si z = 1 obtenemos la elipse $\frac{(x-3)^2}{4} + \frac{(y-3)^2}{9} = 1$, z = 1; que se dibuja en el plano z = 1.
 - Hacer clic en la figura para ver en 3D (en Internet)



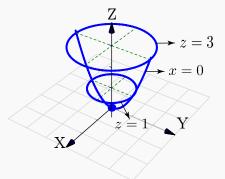
Este es el elipsoide,

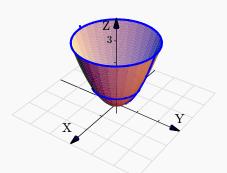


Consideremos la superficie de ecuación $z = x^2 + y^2$. Trazar la superficie usando las trazas correspondientes a z = 0,1,3 y x = 0.

Solución:

- La traza z = 0 es el punto (0,0,0)
- La traza z = 1 es la circunferencia $1 = x^2 + y^2$; en el plano z = 1
- La traza z = 3 es la circunferencia $3 = x^2 + y^2$; en el plano z = 3
- La traza x = 0 es la parábola $z = y^2$; en el plano x = 0





Ejemplo 2.29

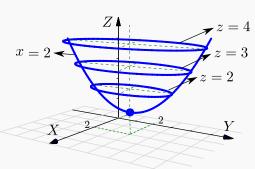
Consideremos la superficie de ecuación $z-1=(x-2)^2+\frac{(y-2)^2}{4}$. Trazar la superficie usando las trazas correspondientes a z = 1, 2, 3, 4 y x = 2.

Solución:

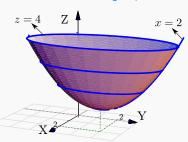
- La traza z = 1 es el punto (2,2,1)
- La traza z = 2 es la elipse $1 = (x 2)^2 + \frac{(y 2)^2}{4}$ en el plano z = 2.
- La traza z = 3 es la elipse $1 = \frac{(x-2)^2}{2} + \frac{(y-2)^2}{8}$ en el plano z = 3.
- La traza z = 4 es la elipse $1 = \frac{(x-2)^2}{3} + \frac{(y-2)^2}{12}$ en el plano z = 4.

Ejemplo 2.29 (continuación).

• La traza x = 2 es la parábola $z - 1 = \frac{(y-2)^2}{4}$ en el plano x = 2.



• Hacer clic en la figura para ver en 3D (en Internet)



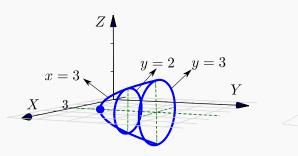
Ejemplo 2.30

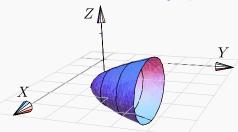
Identifique y dibuje la superficie cuadrática $x^2 + 2z^2 - 6x - y + 10 = 0$

Solución: Completando el cuadrado en x obtenemos el *paraboloide elíptico* $y - 1 = (x - 3)^2 + 2z^2$. Abre en dirección del la parte positiva del eje Y.

Trazas. La estrategia es la siguiente: El *paraboloide elíptico* (que está más arriba), se puede dibujar con un par de elipses y una parábola. Para obtener las elipses le damos valores a y en la ecuación $y-1=(x-3)^2+2z^2$. Se requiere que $y \ge 1$.

- Si y = 1 obtenemos el punto: (3,1,0).
- Si y = 2 obtenemos la elipse $1 = (x 3)^2 + \frac{z^2}{1/2}$ en el plano y = 2
- Si y = 3 obtenemos la elipse $1 = \frac{(x-3)^2}{2} + z^2$ en el plano y = 3
- Para obtener la parábola, ponemos x = 3 y obtenemos la parábola $y = 2z^2 + 1$ en el plano x = 3.





Identifique y dibuje la superficie cuadrática $4x^2 - y^2 + 2z^2 + 4 = 0$.

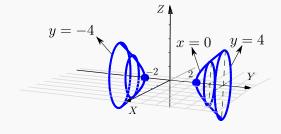
Solución: Dividiendo por 4 obtenemos: $-x^2 + \frac{y^2}{4} - \frac{z^2}{2} = 1$, que corresponde a un *hiperboloide de dos hojas*. Abre en dirección del eje Y.

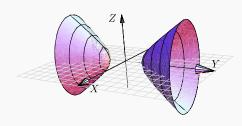
Trazas. La estrategia es la siguiente: El *hiperboloide de dos hojas* (que está más arriba), se puede dibujar con dos elipses y una hipérbola *por cada hoja*.

Para obtener elipses, arreglamos la ecuación como $\frac{y^2}{4} - 1 = x^2 + \frac{z^2}{2}$. Las elipses se obtienen dando valores a y con |y| > 2.

- Si $y = \pm 2$ obtenemos dos puntos: (0,2,0), (0,-2,0).
- Si $y = \pm 3$ obtenemos la elipse $\frac{x^2}{5/4} + \frac{z^2}{5/2} = 1$ en el plano y = 3 y el plano y = -3.
- Si $y = \pm 4$ obtenemos la elipse $\frac{x^2}{3} + \frac{z^2}{6} = 1$ en el plano y = 4 y el plano y = -4.
- Para obtener la hipérbola, ponemos x = 0 y arreglamos la ecuación como $\frac{y^2}{4} \frac{z^2}{2} = 1$.

• Hacer clic en la figura para ver en 3D (en Internet)





EJERCICIOS (Cuádricas)

2.5 Dibuje cada una de las siguientes cuádricas

a)
$$x^2 + (y-2)^2 = z/4$$

b)
$$z^2 + y^2 = x/4$$

c)
$$x^2 + y^2 + (z-1)^2/9 = 1$$

d)
$$x^2 + y^2 - (z-2)^2 = 1$$

e)
$$x^2 + y^2 - (z-2)^2 = 0$$

f)
$$x^2 + (y-2)^2 - z^2 = 0$$

2.6 Considere la superficie de ecuación $S: 4-z=x^2+(y-2)^2+z$. Dibuje por separado las trazas de S con los planos x=0, z=3 y z=0. Y luego dibuje S.

2.5 Sólidos simples

Los sólidos simples se describen por medio de su frontera, es decir, se describen por las superficies que lo limitan. Un sólido simple es un conjunto compacto limitado por una o varias superficies orientables (de dos caras), sin hoyos, con borde y sin traslapes; en el interior del sólido no hay superficies ni 'burbujas' (la frontera del sólido es tal que divide el espacio en dos partes).

2.5.1 Visualizando curvas de intersección entre superficies

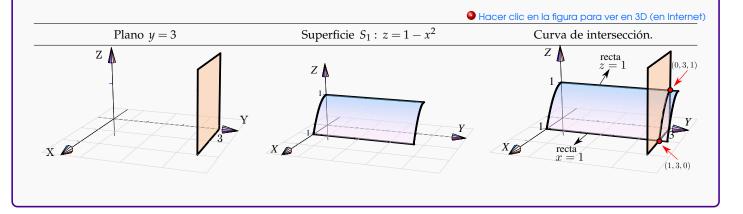
Para realizar dibujos 'a mano' es esencial visualizar las curvas de intersección entre superficies. En general, si dos superficies se cortan en una o varias curvas, una manera de bosquejar estas curvas es buscar algunos puntos de contacto. En los casos más sencillos, estos puntos los podemos localizar en los planos XY, XZ o YZ. En los ejemplos que siguen, estos "puntos-guía" se señalan con un punto rojo.

Ejemplo 2.32

Consideremos la curva C de intersección de la superficie S_1 : $z = 1 - x^2$ y el plano S_2 : y = 3, en el primer octante.

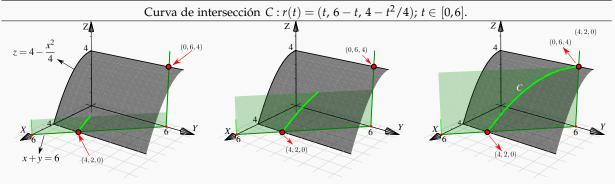
Para dibujar esta curva, calculamos "dos puntos guía" para trazar la curva. Los puntos guía están en rojo en la figura. Son el punto de interseción entre las rectas z = 1 y y = 3 en el plano YZ y el punto de interseción entre las rectas z = 1 y y = 3 en el plano XY. La curva que queremos dibujar inicia en uno de estos puntos y termina en el otro.

Para obtener una parametrización de esta curva C, podemos tomar a x = t como paramétro, $C : r(t) = (t, 3, 1 - t^2)$ con $t \in [0,1]$.



Consideremos la curva C de intersección entre la superficie S_1 : $z=4-\frac{x^2}{4}$ y el plano S_2 : x+y=6 *en el primer octante.*

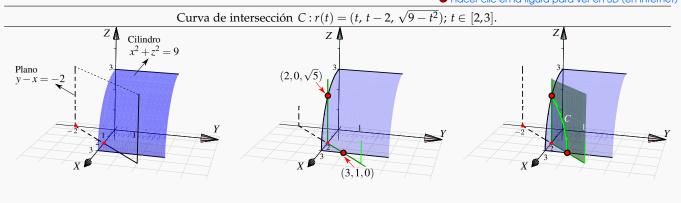
El plano S_2 : x + y = 6 interseca a los ejes X e Y en x = 6 y y = 6, respectivamente. Como se observa, los puntosguía están en los planos XY y YZ. En el plano XY el punto-guía se obtiene sustituyendo x = 4 en la ecuación de la recta x + y = 6, z = 0; se obtiene (4,2,0). En el plano YZ el punto-guía es claramente (0,6,4). Usando x = t, una parametrización de la curva C es $r(t) = (t,6-t,4-t^2/4)$; $t \in [0,6]$.



Ejemplo 2.34

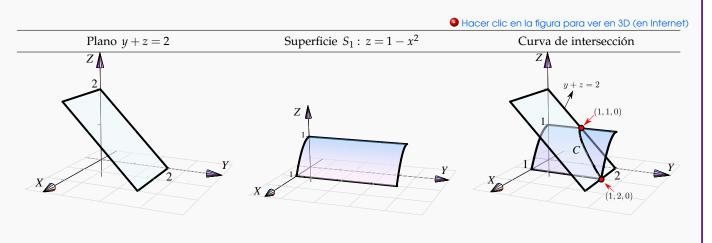
Consideremos la curva de intersección entre la superficie S_1 : $x^2 + z^2 = 9$ y el plano S_2 : y - x = -2 en el primer octante.

El corte del plano S_2 : y-x=-2 con el plano XZ es la recta x=2 (pues sobre este plano, y=0). Sustituyendo x=2 en la ecuación $x^2+z^2=9$, y=0; obtenemos el punto de intersección $(2,0,\sqrt{5})$. El otro punto-guía se obtiene sustituyendo x=3 en la ecuación del plano S_2 : y-x=-2, este punto es (3,1,0). Para una parametrización podemos usar x=t como paramétro.



Consideremos la superficie S_1 : $z = 1 - x^2$ y el plano S_2 : y + z = 2 en el primer octante. Los puntos-guía son (1,2,0) y (0,1,1). El punto (0,1,1) se obtiene sustituyendo z = 1 en la ecuación de la recta y + z = 2, x = 0.

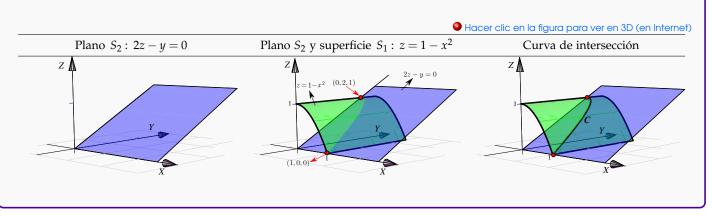
Para una parametrización, podemos tomar x = t como parámetro, $C: r(t) = (t, 2 - (1 - t^2), 1 - t^2), t \in [0, 1].$



Ejemplo 2.36

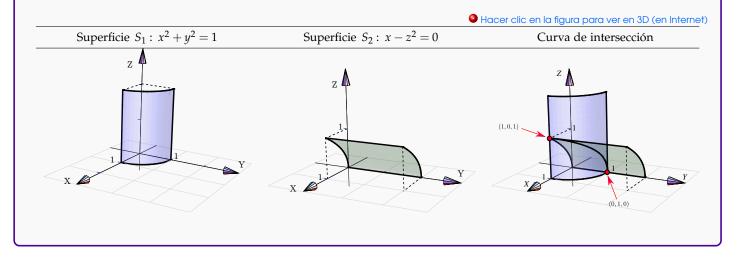
Consideremos la superficie S_1 : $z = 1 - x^2$ y el plano S_2 : 2z - y = 0, en el primer octante. Para dibujar la curva C de intersercción en el primer octante, buscamos los puntos guía. En este caso estos puntos son (1,0,0) y (0,2,1).

Para obtener una parametrización de la curva C, podemos usar x=t como paramétro; $C: r(t)=(t,2(1-t^2),1-t^2), t\in [0,1].$



Consideremos las superficies S_1 : $x^2 + y^2 = 1$, S_2 : $x - z^2 = 0$, en el primer octante. Para dibujar la curva C de intersercción en el primer octante, buscamos los puntos guía. En este caso estos puntos son (1,1,0) y (0,1,0).

Para obtener una parametrización de la curva C, podemos parametrizar desde el plano XY. La circunferencia $x^2+y^2=1$ se parametriza con $x=\cos t$ y $y=\sin t$. La coordenada z es $z=\sqrt{x}=\sqrt{\cos t}$. Así, $C: r(t)=(\cos t, \sin t, \sqrt{\cos t}), \ t\in [0,\pi/2]$.



Perspectivo. En general, cuando dibujamos el sistema de ejes *XYZ* en posición estándar, podemos mover el eje *X* un poco hacia arriba o un poco hacia abajo y esto hace que la perspectiva cambie. En el dibujo que sigue, se muestra la intersección del mismo cilindro y el mismo plano, la diferencia está en la posición del eje *X* (lo que produce el cambio de perspectiva!)

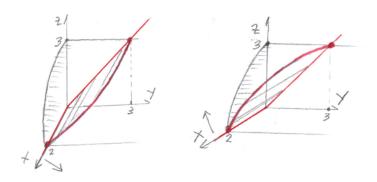
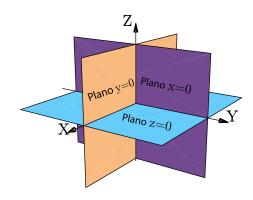


Figura 2.13: Efecto en la perspectiva al mover el eje *X*

2.5.2 Dibujo de sólidos simples

Los planos x = 0; y = 0 **y** z = 0. Muchos de los sólidos están limitados por uno o varios de los planos coordenados, es decir, los planos x = 0; y = 0 y z = 0. Por lo tanto vale la pena recordar estos planos.

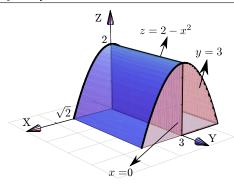
¿Siempre dibujamos en el l octante?. No, excepto que se pida de manera específica. A veces se pide el dibujo en el primer octante para simplificar el dibujo, pero para otros sólidos es obligatorio especificar el octante para que se cumpla la especificación de *sólido simple* que dimos más arriba y así evitar ambigüedades (recuerde que los sólidos simples son conjuntos compactos y no tienen superficies interiores ni 'burbujas').

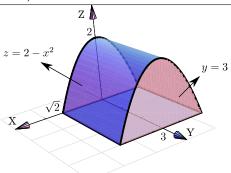


Ambiguedades. Por ejemplo, el sólido Q limitado por $z = 2 - x^2$; y = 3; x = 0; y = 0 y z = 0, no es un sólido simple pues x = 0 es una superficie interior. Si eliminamos esta superficie interior, si tendríamos un sólido simple.

• Hacer clic en la figura para ver en 3D (en Internet)

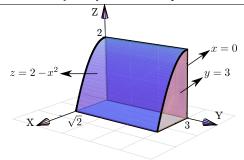
Sólido Q (no simple) limitado por $z=2-x^2$; y=3; Sólido Q simple, limitado por $z=2-x^2$; y=3; y=0 y z=0, z=0,



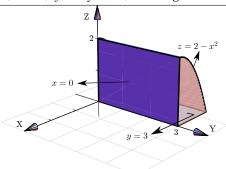


Los siguientes sólidos son una "variación" del sólido anterior, pero ahora se trata de sólidos simples. En particular muestran que la presencia de los planos "x = 0, y = 0, z = 0" no implica que el sólido esté en el primer octante, de hecho se pueden usar estos planos especificando que el sólido está en otro octante:

Q limitado por $z = 2 - x^2$; y = 3; x = 0; y = 0 y z = 0, en el primer octante



Q limitado por $z = 2 - x^2$; y = 3; x = 0; y = 0 y z = 0, en el segundo octante

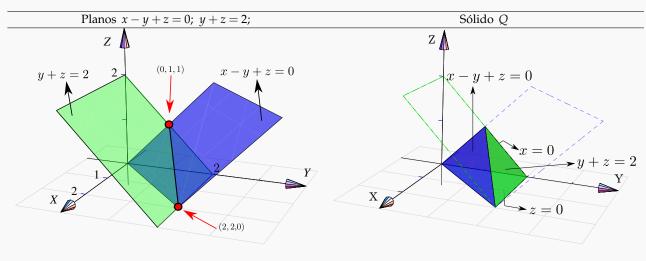


El dibujo de sólidos simples se hace estableciendo las rectas o las curvas de intersección entre las superficies que limitan el sólido.

Ejemplo 2.38

Dibujar el sólido Q limitado por los planos x - y + z = 0; y + z = 2; x = 0 y z = 0.

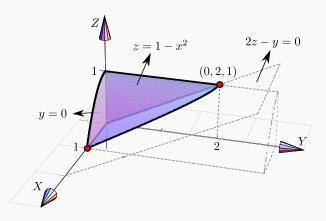
Solución: Dibujamos ambos planos y marcamos los puntos guía para trazar el segmento de intersección. Uno de los puntos se obtiene como la intersección de las rectas -y+z=0 y y+z=2, y el otro como la intersección de las rectas x - y = 0 y y = 2. Estos puntos son (0,1,1) y (2,2,0) El sólido se mantiene en el primer octante pues está limitado por el plano x = 0 (plano YZ) y el plano z = 0 (plano XY).



Dibujar el sólido Q limitado por la superficie S_1 : $z=1-x^2$ y los planos 2z-y=0; y=0; y=0; en el primer octante.

Solución: La superficie S_1 : $z = 1 - x^2$ queda arriba y el plano 2z - y = 0 queda abajo. El plano z = 0 *no* es parte del sólido. El punto (0,2,1) se obtiene como intersección de las rectas z = 1 y 2z - y = 0.

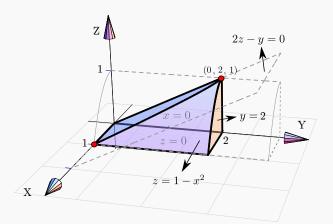
• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 2.40

Dibujar el sólido Q limitado por la superficie S_1 : $z = 1 - x^2$ y los planos 2z - y = 0; z = 0 y y = 2, en el primer octante.

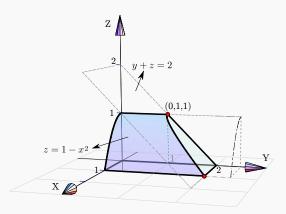
Solución: Como el sólido está limitado por los planos z=0 y x=0, entonces el plano 2z-y=0 queda en la parte de arriba del sólido.



Dibujar el sólido Q limitado por la superficie S_1 : $z = 1 - x^2$ y el plano y + z = 2; en el primer octante.

Solución: En este caso no es necesario especificar los planos x = 0; y = 0 y z = 0; con solo especificar que está en el primer octante es suficiente porque en este caso no hay ambiguedad.

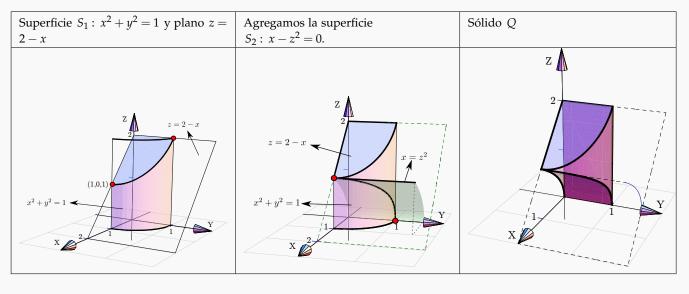
• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 2.42

Dibujar el sólido Q limitado por las superficies S_1 : $x^2 + y^2 = 1$; S_2 : $x - z^2 = 0$ y los planos z = 2 - x; x = 0 y y = 0, en el primer octante.

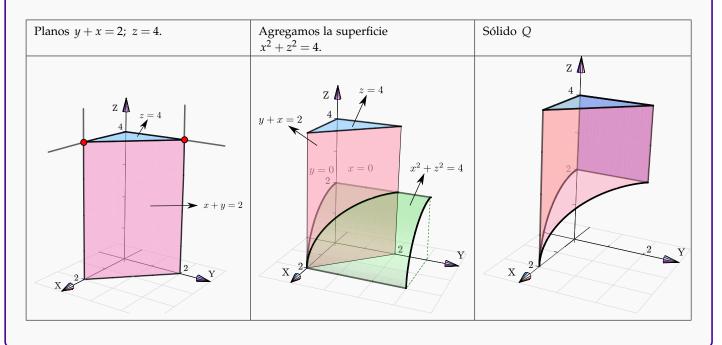
Solución: Tal vez sea más sencillo dibujar primero la superficie S_1 : $x^2 + y^2 = 1$ y el plano z = 2 - x; luego dibujamos la otra superficie S_2 : $x - z^2 = 0$.



Dibuje el sólido Q limitado por las superficies $x^2 + z^2 = 4$; y + x = 2; z = 4; y = 0, x = 0, en el I octante.

Solución: Diibujamos los planos y + x = 2 y z = 4; luego agregamos la otra superficie $x^2 + z^2 = 4$.

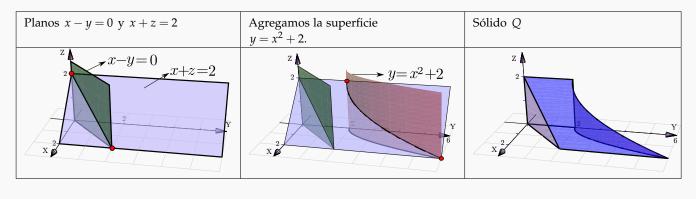
• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 2.44

Dibuje el sólido Q limitado por la superficie $y = x^2 + 2$ y los planos x - y = 0; x + z = 2; x = 0 y z = 0.

Solución: Tal vez sea más sencillo dibujar primero los planos x - y = 0 y x + z = 2; luego agre-gamos la otra superficie $y = x^2 + 2$.



EJERCICIOS

2.7 Dibujar el sólido Q_1 limitado por las superficies $x^2 + y^2 = 4$; z + y = 2; y = 1 y y = 0, en el I octante.

2.8 Sólido Q_2 limitado por la superficie $x^2 + y^2 = 4$; y los planos z + y = 2; $x + \sqrt{3}y = 2\sqrt{3}$ y x = 0, en el I octante

2.9 Sólido Q_3 limitado por la superficie $y^2 + z^2 = 1$; y los planos x + y = 2; x - y + z = 0, en el I octante.

2.10 Sólido Q_4 limitado por la superficie $y^2 + z^2 = 4$ y los planos 2x - 2y + z = 2; x = 0 y z = 0.

2.11 Sólido Q_5 limitado por la superficie $(x-4)^2+y^2=4$ y los planos x-z=0; y=-2; y=2; y z=0 con $0 \le x \le 4$.

2.12 Sólido Q_6 limitado por la superficie $y^2 + z^2 = 16$ y los planos x + 2y + z = 2; x + z = 2; x = 0; y z = 0 en el I octante.

2.13 Sólido Q_7 limitado por la superficie $y^2 + z^2 = 16$ y los planos x + 2y + z = 2; x + z = 2; x = 0; y z = 0 en el I y IV octante.

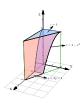
2.14 Sólido Q_8 limitado por la superficie $y = x^2$ y los planos 2z + 3y = 18; x + y = 6; z = 3; x = 0; y z = 0, en el I octante.

2.15 Sólido Q_9 limitado por la superficie $x^2 = 4 - z$ y los planos 2z + 2y = 6; z = 3x; y = 0; y z = 0.

2.16 Sólido Q_{10} limitado por la superficie $z = 9 - x^2$ y los planos 5y - 5x + 2z = 0 y y = 3, en el primer octante.

2.17 Sólido Q_{11} limitado por las superficies $z = 4 - x^2$; 2y + z = 8; y = x; x = 0 y z = 0, en el primer octante.

2.18 Sólido Q_{12} limitado por las superficies $z = 4 - x^2/4$; y = 6 - x; y = 4 y y = 0, en el primer octante.



2.19 Sólido Q_{13} limitado por las superficies $z = 4 - x^2$; x + 2y = 4; z = 4; z = 0 y y = 0.

2.20 Sólido Q_{14} limitado por las superficies $y = 2 - 2x^2$; $y = 1 - x^2$; y + 2z = 2; x = 0 y z = 0; en el I octante.

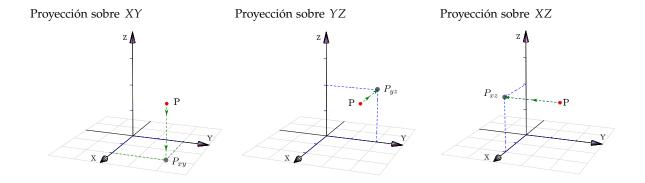
2.21 Sólido Q_{15} limitado por las superficies $y = 2 - 2x^2$; $y = 1 - x^2$; y + 2z = 2; x = 0 y z = 2, en el I octante.

2.22 Sólido Q_{16} limitado por las superficies $x^2 + y^2 = 1$; $z = 1 - x^2$, en el I octante.

2.23 Sólido Q_{17} limitado por las superficies $z = 1 - x^2$; z - y = 1; y = x; x = 0 y z = 0, en el I y IV octante.

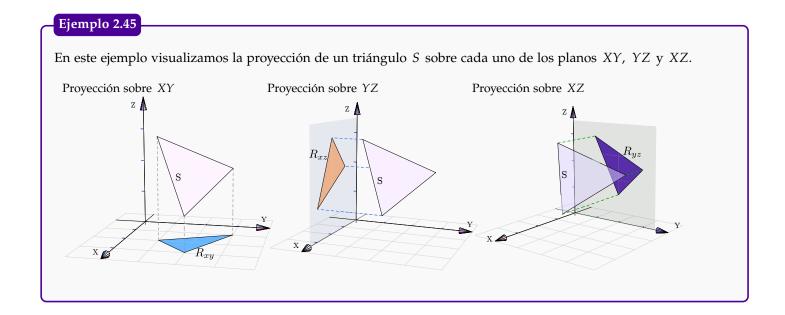
2.6 Proyección ortogonal de un sólido simple

Proyección ortogonal de un punto. La proyección ortogonal de un punto P en un plano es el punto en este plano cuya distancia (euclidiana) a P es mínima. Intuitivamente corresponde a la "sombra" del punto proyectada perpendicularmente sobre el plano. En la figura que sigue se muestra la proyección de un punto P sobre cada uno de los planos XY, YZ y XZ.



Proyección ortogonal de una superficie.

La proyección perpendicular de una superficie S es la proyección de cada uno de sus puntos.

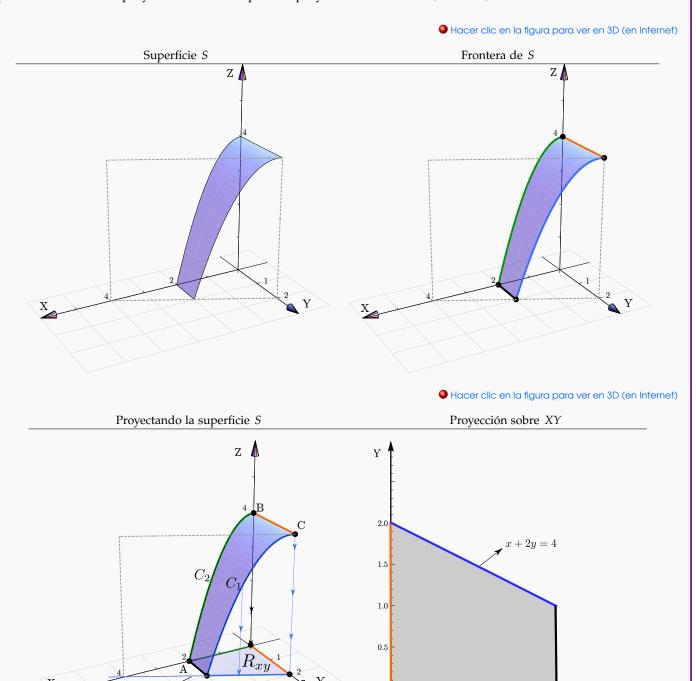


En la práctica nos interesa describir la proyección de manera analítica porque, en este curso, estas proyecciones van a ser regiones de integración.

x + 2y = 4

Ejemplo 2.46

Consideremos la superficie $S: z=4-x^2$ limitada por el plano x+2y=4 en el primer octante. En general, se puede determinar la proyección de una superficie proyectando la frontera, es decir, la curvas



Las curvas C_1 y C_2 están en planos perpendiculares al plano XY. La curva C_2 está en el plano XZ por lo que su proyección es el segmento que va del origen hasta (2,0,0). La curva C_1 está sobre el plano x+2y=4, como este plano es *perpendicular al plano* XY, la proyección de esta curva está sobre la recta que genera el plano, es el segmento que va de (0,2,0) a (2,1,0).

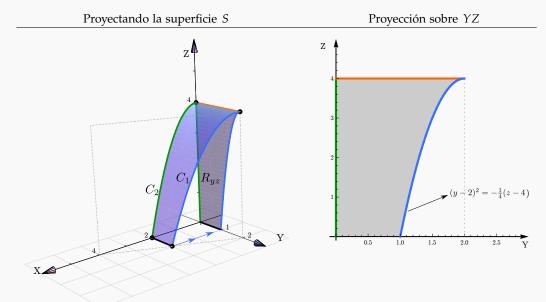
0.5

1.5

Ejemplo 2.46 (continuación).

Finalmente podemos decir que R_{xy} está entre la recta y = 0 y la recta x + 2y = 4 con $x \in [0,2]$.

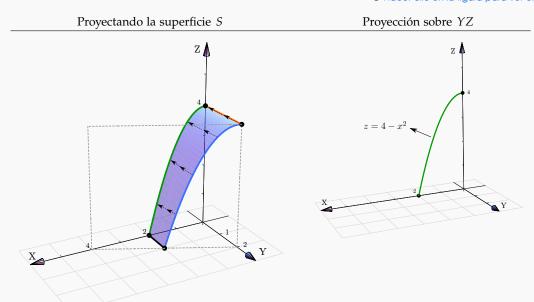
• Hacer clic en la figura para ver en 3D (en Internet)



La curva C_2 está en el plano XZ, por tanto su proyección es el segmento que va de (0,0,0) a (0,0,4). La curva C_1 esta en un plano que no es perpendicular a YZ. Para calcular la ecuación de su proyección observamos que esta curva es la intersección de las superficies $S: z=4-x^2$ y x+2y=4, lo que hacemos es eliminar la varible x para que nos quede una ecuación en términos de y y z.

$$\begin{cases} z = 4 - x^2 \\ x = 4 - 2y \end{cases} \implies z = 4 - (4 - 2y)^2, \text{ o también } (y - 2)^2 = -\frac{1}{4}(z - 4) \text{ (una parábola!)}.$$

• Hacer clic en la figura para ver en 3D (en Internet)



La curvas C_1 y C_2 están sobre la superficie $z=4-x^2$ que es perpendicular al plano XZ, por lo tanto la proyección de la superficie S es la misma curva $z = 4 - x^2$ (no hay región).

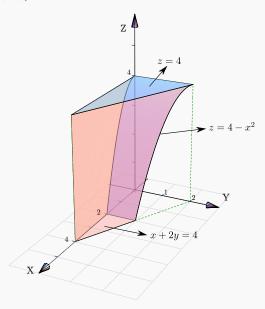
Proyección de un sólido

En el caso de sólidos simples, la proyección se determina proyectando las superficies (posiblemente no todas) que lo limitan.

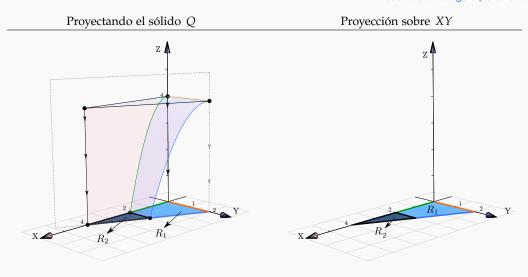
Ejemplo 2.47

Consideremos el sólido Q limitado por la superficie S: $z=4-x^2$ y los planos x+2y=4 y z=4, en el primer octante.

• Hacer clic en la figura para ver en 3D (en Internet)



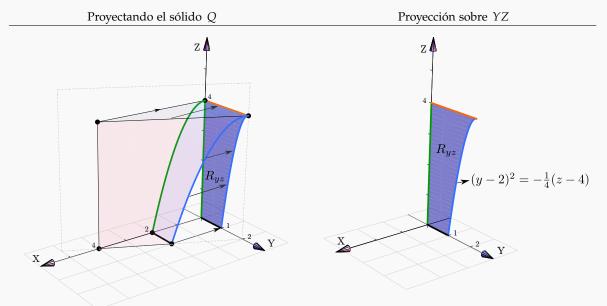
Proyección sobre el plano XY: La proyección es $R_{xy} = R_1 + R_2$. La superficie $z = 4 - x^2$ se proyecta sobre R_1 y el plano z = 4 se proyecta sobre R_{xy} . El plano x + 2y = 4 se proyecta en la recta que genera este mismo plano.



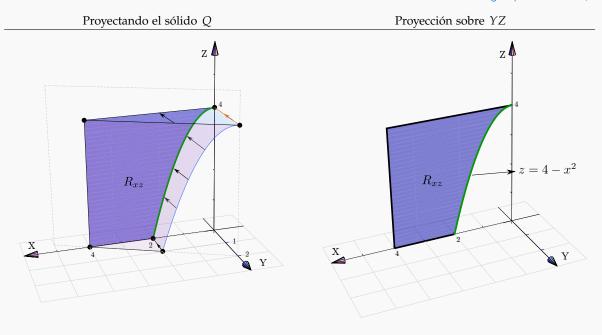
Ejemplo 2.47 (continuación).

Proyección sobre el plano YZ: La proyección R_{yz} va desde la recta z=0 (eje Z) hasta la parábola $(y-2)^2=-\frac{1}{4}(z-4)$ (esta ecuación la determinamos en el ejemplo anterior) con $z\in[0,4]$. Tanto la superficie $z=4-x^2$ como la porción del plano x+2y=4 se proyectan sobre esta región. El plano z=4 se proyecta sobre el segmento que va de (0,0,4) a (0,2,4).

• Hacer clic en la figura para ver en 3D (en Internet)



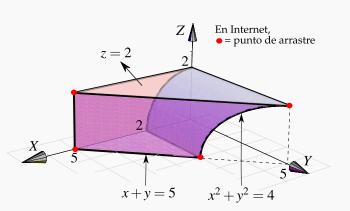
Proyección sobre el plano XZ: La proyección R_{xz} va desde la parábola $z=4-x^2$ hasta la recta x=4. La porción del plano x+2y=4 se proyecta sobre esta región. La superficie $z=4-x^2$ se proyecta sobre la curva que la genera y el plano z=4 se proyecta sobre el segmento que va de (4,0,4) a (0,0,4)



Ejemplo 2.48 (Interactivo).

En este ejemplo, en las páginas web asociadas, usted podrá arrastrar los *puntos rojos* para simular la proyección respectiva.

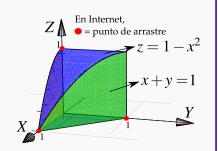
Consideremos el sólido Q limitado por $x^2 + z^2 = 4$, x + y = 5 y z = 2; en elprimer octante.



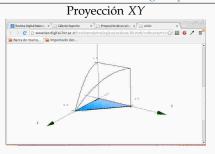
Hacer clic sobre la figura para ver en Internet – Arrastrar los *puntos rojos* en la dirección de la proyección

Ejemplo 2.49 (Interactivo).

Consideremos el sólido Q limitado por las superficies S_1 : $z = 1 - x^2$, S_2 : x + y = 1 y los planos x = 0, y = 0 y z = 0; en el primer octante.

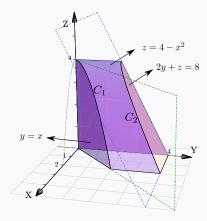


Hacer clic sobre la figura para ver en Internet – Arrastrar los *puntos rojos* en la dirección de la proyección



Consideremos el sólido Q limitado por la superficie S: $z=4-x^2$ y los planos 2y+z=8 y y=x, en el primer octante.

• Hacer clic en la figura para ver en 3D (en Internet)



Proyección sobre el plano XY: La curva C_1 está en el plano y = x que es perpendicular al plano XY; su proyección es el segmento que va de (0,0,0) a (2,2,0).

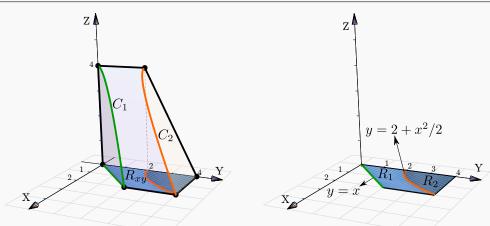
La curva C_2 es la intersección de las superficies $z = 4 - x^2$ y 2y + z = 8; la ecuación de su proyección en el plano XY se obtiene eliminando z,

$$\begin{cases} z = 4-x^2 \\ & \Longrightarrow y = 4-\frac{(4-x^2)}{2}, \text{ o también } y = 2+\frac{x^2}{2} \text{ (una parábola!)}. \end{cases}$$

• Hacer clic en la figura para ver en 3D (en Internet)

Proyectando el sólido Q

Proyección sobre XY

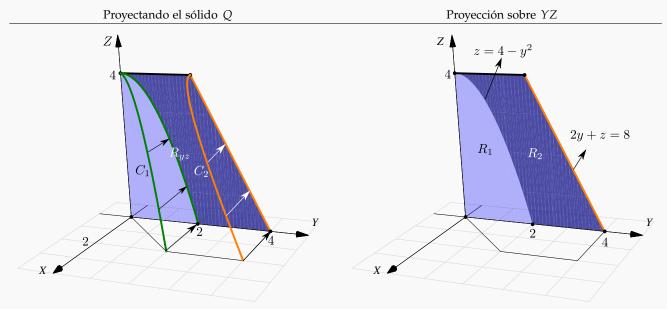


La proyección es $R_{xy} = R_1 + R_2$. La porción de la superficie $z = 4 - x^2$ se proyecta sobre R_1 mientras que la porción del plano 2y + z = 8 se proyecta sobre R_2 . El plano y = x es perpendicular al plano XY y por tanto se proyecta sobre su recta generadora y = x.

Ejemplo 2.50 (continuación).

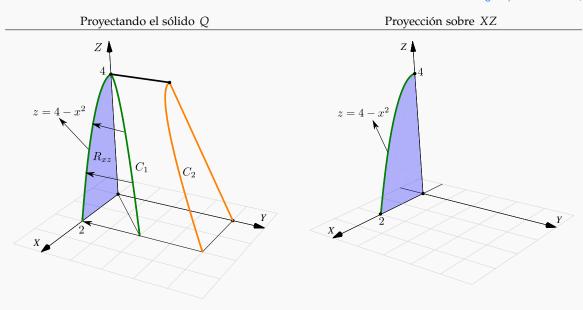
Proyección sobre el plano YZ: La curva C_1 es la intersección de la superficie $z=4-x^2$ con el plano y=x por lo que su proyección en el plano YZ es la parábola $z=4-y^2$. La curva C_2 está en un plano perpendicular al plano YZ, por lo tanto su proyección está en la recta que genera el plano: 2y+z=8.

• Hacer clic en la figura para ver en 3D (en Internet)



La proyección es $R_{yz} = R_2 + R_2$. La proyección de la porción del plano y = x es la región R_1 . La proyección de la porción de superficie $z = 4 - x^2$ es la región R_2 . La proyección del plano 2y + z = 8 es el segmento que va de (4,0,0) a (0,2,4).

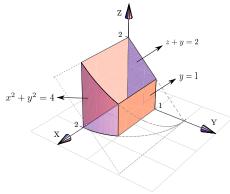
Proyección sobre el plano XZ: La proyección es R_{xz} . En este caso, las curvas C_1 y C_2 se proyectan sobre la curva $z=4-x^2$. La superficie $z=4-x^2$ se proyecta sobre su curva generadora mientras que las porciones de los planos y=x y 2y+z=8 se proyectan sobre R_{xz} .



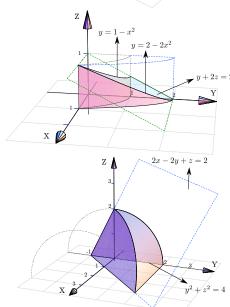
EJERCICIOS (Proyecciones de un sólido)

• Hacer clic en la figura para ver en 3D (en Internet)

2.24 Dibujar las proyecciones del sólido Q si este sólido está limitado por $x^2 + y^2 = 4$; z + y = 2; y = 1; x = 0; y = 0 y z = 0, en el I octante



2.25 Dibujar las proyecciones del sólido Q si este sólido está limitado por las superficies $y=2-2x^2$; $y=1-x^2$; y+2z=2; x=0 y z=0; en el I octante.



2.26 Dibujar las proyecciones del sólido Q si este sólido está limitado por la superficie $y^2 + z^2 = 4$ y los planos 2x - 2y + z = 2; x = 0 y z = 0.

Versión más reciente (y actualizaciones) de este libro:

http://www.tec-digital.itcr.ac.cr/revistamatematica/Libros/http://dl.dropbox.com/u/57684129/revistamatematica/Libros/index.html

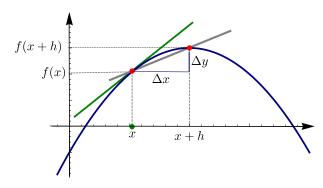
CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

3.1 Introducción

La derivada de una función de una variable mide la rapidez de cambio de la variable dependiente respecto a la variable independiente. La derivada de la función y = f(x) en x es,

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

siempre y cuando este límite exista. Geométricamente, la derivada de f en x es la pendiente de la recta tangente a f en x.



Si $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, la derivada de f en $\mathbf{x} = (x_0, y_0) \in \mathbb{R}^2$, en la dirección de un vector unitario $\mathbf{v} = (v_1, v_2) \in \mathbb{R}^2$, mide la rapidez (instántanea) de cambio de f a través de la recta $L(h) = \mathbf{x} + h\mathbf{v}$ cuando h = 0. De nuevo, esta derivada en la dirección de \mathbf{v} se obtiene como un límite,

$$\lim_{h \to 0} \frac{f(x_0 + hv_1, y_0 + hv_2) - f(x_0, y_0)}{h}.$$

El cambio en la recta es $||\mathbf{x} - \mathbf{x} - h\mathbf{v}|| = ||h\mathbf{v}|| = h$. Geométricamente, esta derivada es la pendiente de la recta tangente a la *curva* $C(h) = (x_0 + hv_1, y_0 + hv_2, f(\mathbf{x} + h\mathbf{v}))$ en h = 0. Esta curva es la intersección de la superficie S de ecuación z = f(x,y) con el plano generado por la recta L tal y como se muestra en la figura (3.1).

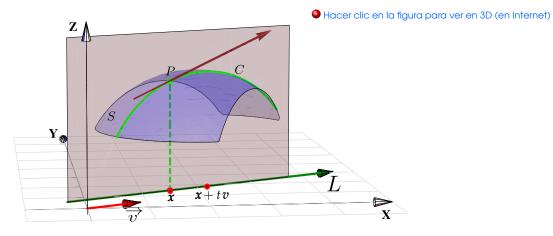
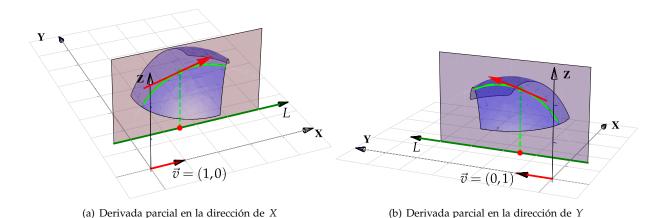


Figura 3.1: Derivada direccional en la dirección de v

De particular interés son la derivada en la dirección del eje X, denotada $\frac{\partial f}{\partial x}$, y la derivada en la dirección del eje Y, denotada $\frac{\partial f}{\partial y}$; llamadas *derivadas parciales* respecto a x e y respectivamente.



La derivada de una función es una transformación lineal y como tal tiene una representación matricial. Si tenemos $f: \mathbb{R}^n \to \mathbb{R}$, el gradiente de f, $\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$ sería el análogo de la derivada ordinaria de f (llamada

'matriz jacobiana'). En cada punto \mathbf{x} , el gradiente describe cómo el campo escalar f cambia con la posición. Si f es continuamente diferenciable en un entorno de \mathbf{p} , entonces

$$f(\mathbf{p} + \Delta \mathbf{x}) - f(\mathbf{p}) = \nabla f(\xi) \cdot \Delta \mathbf{x}$$
 con $\xi = \mathbf{p} + \theta \mathbf{x}$, para algún $0 \le \theta \le 1$.

Si $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$, la derivada de $f = (f_1, ..., f_m)$ en un punto $\mathbf{x_0} \in \mathbb{R}^n$ es la matriz (jacobiana) $\mathbf{D}f = \left(\frac{\partial f_i}{\partial x_i}\right)_{m \times n}$ evaluada en $\mathbf{x_0}$ (ver seción 3.9).

3.2 Límites de funciones de varias variables.

Como ya vimos en la introducción, la definición de la derivada de una función de varias variables requiere el concepto de límite de una función de varias variables.

Conjuntos abiertos. Un conjunto abierto $U \subseteq \mathbb{R}^n$ es un conjunto en el que cada uno de sus elementos tienen un entorno V a su alrededor contenido en U, es decir, para cada $c \in U$ existe $\delta > 0$ tal que el entorno $V_{\delta}(c) = \{u \in U : ||u - c|| < \delta\} \subseteq U$. Por ejemplo, los intervalos abiertos en \mathbb{R} o los círculos $sin\ frontera$ en \mathbb{R}^2 y las esferas $sin\ frontera$ en \mathbb{R}^3 , son conjuntos abiertos. Estos entornos V son necesarios para poder calcular límites en cualquier punto de U.

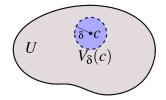


Figura 3.2: Conjunto abierto

Límite en varias variables. La definición de un límite en varias variables es esencialmente la misma que la de límite en una variable. En una variable, $\lim_{x\to x_0} f(x) = L$ si y solo si para cualquier $\epsilon>0$, existe un $\delta_\epsilon>0$ tal que

$$0 < |x - x_0| < \delta_{\epsilon} \implies |f(x) - L| < \epsilon.$$

En \mathbb{R} la única manera de acercarse a x_0 es sobre el eje X. En \mathbb{R}^n se pueden tomar muchos caminos para acercarse a un punto. Esto hace que los límites en varias variables sean de más cuidado.

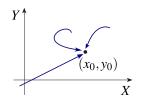


Figura 3.3: Acercarse a (x_0, y_0)

Definición 3.1 (Límite en varias variables).

Sean $f: \mathbb{R}^n \longrightarrow \mathbb{R}$. Decimos que $\lim_{(x_1,...,x_n) \to (a_1,...,a_n)} f(x_1,...,x_n) = L$ si y solo si para cualquier $\epsilon > 0$, existe un $\delta_{\epsilon} > 0$ tal que

$$0 < ||(x_1,...,x_n) - (a_1,...,a_n)|| < \delta_{\epsilon} \implies |f(x_1,...,x_n) - L| < \epsilon.$$

Ejemplo 3.1 (Límites por definición).

Probar, usando la definición de límite, que $\lim_{(x,y)\to(0,0)}2x^2y^2=0$.

Solución: Dado $\epsilon>0$, tomamos $\delta_\epsilon=\sqrt{\epsilon}$, entonces con esta elección de δ_ϵ tenemos

$$||(x,y) - (0,0)|| < \delta_{\epsilon} \implies \sqrt{x^2 + y^2} < \sqrt{\epsilon}$$

$$\implies 2x^2y^2 \le x^2 + y^2 < \epsilon \quad \text{pues } (x-y)^2 \ge 0$$

$$\implies |2x^2y^2 - 0| < \epsilon$$

3.3 Teoremas sobre límites

Los teoremas en una variable sobre límites de funciones constantes, funciones lineales, senos, cosenos, etc., así como límites de sumas, productos, cocientes, etc. siguen siendo válidos en varias variables. Pero, hay que recordar que estos teoremas se pueden aplicar si cada límite existe.

Teorema 3.1 (Teoremas para el cálculo de límites).

1. Si
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$$
 y si $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = B$ entonces

(a)
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) \pm g(x,y) = A \pm B$$

(b)
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)g(x,y) = AB$$

(c)
$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{A}{B} \text{ si } B \neq 0$$

2. Si P(x,y) es un polinomio en dos variables, entonces

$$\lim_{(x,y)\to(x_0,y_0)} P(x,y) = P(x_0,y_0)$$

Teorema 3.2 (No existencia de límites).

Si una función $f: \mathbb{R}^2 \to \mathbb{R}$ tiene diferentes límites al calcular con diferentes caminos para acercarse a (x_0, y_0) , entonces $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ no existe

Definición 3.2 (Continuidad).

Una función $f: \mathbb{R}^2 \to \mathbb{R}$ es continua en (x_0, y_0) si el límite de f existe en este punto y si

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

Teorema 3.3 (Continuidad).

1. Sea $f: \mathbb{R} \to \mathbb{R}$ y $g: \mathbb{R}^2 \to \mathbb{R}$. Si $\lim_{(x,y) \to (x_0,y_0)} g(x,y) = B$ y si f es continua en B, entonces

$$\lim_{(x,y)\to(x_0,y_0)} f(g(x,y)) = f(B)$$

2. Si f(x,y) y g(x,y) son funciones continuas en un dominio D entonces también son continuas las funciones $f(x,y) \pm g(x,y)$, f(x,y)g(x,y) y f(x,y)/g(x,y) si $g \ne 0$ en D. Si F(x,y) es continua en D entonces F[f(x,y),g(x,y)] es continua en D.

Ejemplo 3.2 (Cálculo usando teoremas de límites).

$$\lim_{(x,y)\to(0,0)} 2x^2y^2 = 0$$

$$\bullet \lim_{(x,y)\to(1,2)} \frac{x^2y + xy + y^2}{x^2 + y^2} = \frac{8}{5}$$

•
$$\lim_{(x,y)\to(2,1)} \ln(xy-1) = \ln(1) = 0$$

•
$$\lim_{(x,y)\to(1,1)} \frac{x^2-y^2}{x-y} = \lim_{(x,y)\to(1,1)} \frac{(x-y)(x+y)}{x-y} = 2$$

$$\bullet \lim_{(x,y)\to(2,0)}\frac{\sqrt{2x-y}-2}{2x-y-4}=\lim_{(x,y)\to(2,0)}\frac{\sqrt{2x-y}-2}{2x-y-4}\cdot\frac{\sqrt{2x-y}+2}{\sqrt{2x-y}+2}=\lim_{(x,y)\to(2,0)}\frac{2x-y-4}{(2x-y-4)\cdot(\sqrt{2x-y}+2)}=\frac{1}{4}$$

Ejemplo 3.3 (No existencia de un límite).

A veces es fácil probar que un límite no existe calculando con trayectorias diferentes y obteniendo límites diferentes al acercarnos al mismo punto. Esto prueba que el límite no existe pues viola la unicidad del límite.

- $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ no existe pues se viola la unicidad del límite,
 - Si nos acercamos a (0,0) sobre la recta y = x, $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{x^2}{2x^2} = \frac{1}{2}$
 - Si nos acercamos a (0,0) sobre la recta y = 0, $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{0}{x^2} = 0$
- $\lim_{(x,y)\to(0,0)} \frac{x^4y}{x^2+y^2}$ no existe pues se viola la unicidad del límite,
 - Si nos acercamos a (0,0) sobre la recta y=x, $\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^4+y^2}=\lim_{(x,y)\to(0,0)}\frac{x^3}{x^4+x^2}=\lim_{(x,y)\to(0,0)}\frac{x}{x^2+1}=0$
 - Si nos acercamos a (0,0) sobre la parábola $y = x^2$, $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2} = \lim_{(x,y)\to(0,0)} \frac{x^4}{2x^4} = \frac{1}{2}$

Ejemplo 3.4 (Continuidad - coordenadas polares).

• Verificar que $f(x,y) = \begin{cases} \frac{3x^2y}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$ es continua en (0,0).

Solución: Claramente f está definida en (0,0). Ahora debemos probar que $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0 = f(0,0)$. En este caso no podemos aplicar los teoremas de límites, pero podemos usar *coordenadas polares*,

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2 + y^2} = \lim_{r\to 0} \frac{3r^2\cos^2\theta \, r \sin\theta}{r^2}$$
$$= \lim_{r\to 0} 3r\cos^2\theta \, \sin\theta$$
$$= 0, \quad \text{pues} \quad -3r \le 3r\cos^2\theta \, \sin\theta \le 3r, \quad \forall \theta.$$

Ejemplo 3.5 (Continuidad - coordenadas polares).

• Verificar que $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$ no es continua en (0,0).

Solución: f está definida en (0,0). Ahora debemos probar que $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$ No existe. En este caso no podemos aplicar los teoremas de límites, pero podemos usar *coordenadas polares*,

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = \lim_{r\to 0} \frac{r^2 \cos\theta \, \sin\theta}{r^2}$$
$$= \lim_{r\to 0} \cos\theta \, \sin\theta$$

El límite $\limsup_{r\to 0} \cos\theta \sin\theta$ no existe pues $\cos\theta \sin\theta$ varía con θ sin importar el valor de r y la existencia del límite requiere de un valor numérico único. En efecto, sobre la recta $\theta = 0$, el límite es 0 mientras que sobre la recta $\theta = \pi/4$ el límite es 1/2. Notar que ambas rectas pasan por (0,0).

EJERCICIOS

3.1 Calcular $\lim_{(x,y)\to(0,0)} \frac{3x-y}{(x-4)\sin(\pi/2+y)}$

3.2 Calcule c de tal manera que $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ c & \text{si} \quad (x,y) = (0,0). \end{cases}$ sea continua en (0,0).

Sugerencia: Use coordenadas polares.

- 3.3 Calcular $\lim_{(x,y)\to(2,-4)} \frac{y+4}{x^2y-xy+4x^2-4x}$
- **3.4** Verifique que $\lim_{(x,y)\to 0,0)} \frac{\sqrt{x^2+y^2}}{\arccos\left(\frac{x}{\sqrt{x^2+y^2}}\right)}$ no existe.

Sugerencia: Usar coordenadas polares y calcular el límite sobre las hélices $\theta = r$ y $\theta = 2r$. Estas trayectorias pasan por el origen.

- **3.5** Verifique que $\lim_{(x,y)\to 0,0} \frac{\text{sen}(x^2+y^2)}{x^2+y^2} = 1$
- **3.6** Verifique que el límite $\lim_{(x,y)\to 0,0} \frac{x^2 + \text{sen}^2(y)}{2x^2 + y^2}$ no existe.

3.4 Derivadas parciales.

Definición 3.3 (Derivadas parciales).

Sea $U \subseteq \mathbb{R}^n$ un conjunto abierto y sea $f: U \longrightarrow \mathbb{R}$. Entonces la *derivada parcial* $\frac{\partial f}{\partial x_i}$ de f respecto a la variable x_i en el punto $\mathbf{x} = (x_1, ..., x_n)$, se define como

$$\frac{\partial f}{\partial x_{i}} = \lim_{h \to 0} \frac{f(x_{1}, x_{2}, \dots, x_{i} + h, \dots, x_{n}) - f(x_{1}, \dots, x_{n})}{h} = \lim_{h \to 0} \frac{f(x + he_{i}) - f(x)}{h}$$

siempre y cuando este límite exista. Aquí $e_i = (0,...,1,...0)$ con un 1 en la i-ésima posición. El dominio de $\frac{\partial f}{\partial x_i}$ es el subconjunto de \mathbb{R}^n en el que este límite existe.

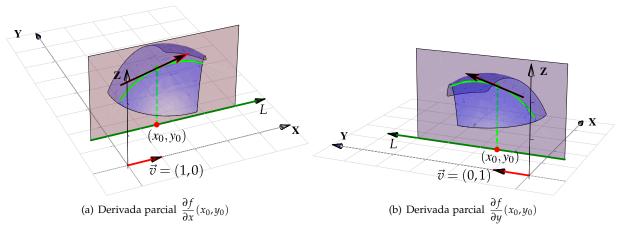
En otras palabras, $\frac{\partial f}{\partial x_i}$ es la derivada ordinaria de f respecto a la variable x_i manteniendo las otras variables fijas. Como tal, podemos usar los teoremas de derivadas en una variable para *el cálculo* de derivadas parciales. Solo hay que recordar que estos teoremas asumen que las derivadas existen. En casos especiales hay que recurrir a la definicón de derivada como un límite para decidir si la derivada de una función existe en un punto dado.

Caso de dos variables. Cuando z = f(x,y), es común denotar las derivadas parciales con $\frac{\partial f}{\partial x}$, $\frac{\partial z}{\partial x}$, z_x o f_x . Según la definición,

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} \quad y \quad \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Es decir, para calcular $\frac{\partial f}{\partial x}$ derivamos de manera oridinaria f respecto a x pensando en y como una constante y para calcular $\frac{\partial f}{\partial y}$ derivamos de manera oridinaria f respecto a y pensando en x como una constante. Esto es válido siempre y cuando apliquen los teoremas de derivadas en una variable.

• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 3.6 (Cálculo directo y por definición).

Sea $f(x,y) = \sqrt[3]{x} \sqrt[3]{y}$, entonces aplicando la regla del producto,

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(\sqrt[3]{x} \sqrt[3]{y} \right) = \frac{\sqrt[3]{y}}{3x^{2/3}}$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(\sqrt[3]{x} \sqrt[3]{y} \right) = \frac{\sqrt[3]{x}}{3y^{2/3}}.$$

Esta es la manera de derivar f respecto a x y respecto a y usando teoremas de derivadas. Sin embargo esto no decide si la función es derivable o no en (0,0). Para saber si estas derivadas parciales existen en (0,0), se debe calcular usando la definición,

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0,$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0,$$

es decir, en este caso la derivada parcial $\frac{\partial f}{\partial x}$ existe en (0,0) y es cero y también $\frac{\partial f}{\partial y}(0,0)=0$.

Ejemplo 3.7 (Derivadas parciales de funciones de dos variables).

En este ejemplo se muestra como calcular derivadas parciales usando las reglas de derivación ordinaria.

Recordemos que en una variable, [kf(x)]' = kf'(x) y $\left[\frac{k}{f(x)}\right]' = \frac{-k \cdot f'(x)}{f^2(x)}$.

•
$$z = \frac{x^3}{y^5} = \frac{1}{y^5} \cdot x^3 \implies \frac{\partial z}{\partial x} = \frac{1}{y^5} \cdot 3x^2$$

Recordemos que en una variable, $[a^u]' = a^u \ln(a) u'$ y $[x^{\alpha}]' = \alpha x^{\alpha - 1}$.

• Si
$$z = x^y$$
 con $x > 0$, entonces $\frac{\partial z}{\partial x} = yx^{y-1}$

• Si
$$z = x^y$$
 con $x > 0$, entonces $\frac{\partial z}{\partial y} = x^y \ln x$

• Si
$$C(x,t) = \frac{e^{-x^2/kt}}{\sqrt{t}}$$
, entonces $\frac{\partial C}{\partial t} = \frac{e^{-x^2/tk} \cdot \frac{x^2}{t^2k} \cdot \sqrt{t} - \frac{1}{2\sqrt{t}} \cdot e^{-x^2/tk}}{t}$

Recordemos que en una variable, si u = g(x) entonces $[f(u)]' = f'(u) \cdot u'$.

• Si
$$z = \arctan(y/x) \implies \frac{\partial z}{\partial x} = \frac{1}{1 + (y/x)^2} \cdot \frac{-y \cdot 1}{x^2}$$

• Si
$$z = \frac{\cos(xy) + x \sec 2y}{2}$$
 entonces $\frac{\partial z}{\partial x}(\pi, \pi/2) = \frac{-y \sec(xy) + \sec 2y}{2}\Big|_{x=\pi, y=\pi/2} = \frac{-\pi \cdot \sec(\pi^2/2)}{4}$.

• Sea
$$f$$
 de una variable y derivable, y $z = f(u)$ con $u = x^5 + y^3$, entonces $\frac{\partial z}{\partial x} = f'(u) \cdot 5x^4$ y $\frac{\partial z}{\partial y} = f'(u) \cdot 3y^2$

Ejemplo 3.7 (continuación)

• Sean f y g funciones derivables de una variable y $z = \frac{f(u)}{g(u)}$ con $u = x^5 + y^3$, entonces

3.5 Derivadas parciales de orden superior

Si f es una función de dos variables x e y, entonces sus derivadas parciales f_x y f_y también son funciones de dos variables, de modo que podemos considerar sus derivadas parciales $(f_x)_x$, $(f_x)_y$, $(f_y)_x$ y $(f_y)_y$, las cuales cuales se llaman segundas derivadas parciales de f. Si z = f(x,y), se utilizan diferentes notaciones para estas derivadas parciales,

•
$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

•
$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$

•
$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 z}{\partial x \partial y}$$

•
$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$$

La notación f_{xy} o $\frac{\partial^2 f}{\partial y \partial x}$ significa que primero derivamos con respecto a x y luego con respecto a y, mientras que para calcular f_{yx} el orden se invierte.

Calcule las segundas derivadas parciales de $f(x,y) = x^3 + x^2y^2 + y^3$

Solución: Las primeras derivadas parciales son

$$f_{\mathbf{x}}(x,y) = 3x^2 + 2xy^2$$

$$f_{y}(x,y) = 2x^2y + 3y^2$$

De donde obtenemos que:

$$f_{xx}(x,y) = 6x + 2y^2$$

$$f_{xy}(x,y) = \frac{\partial}{\partial y} \left[3x^2 + 2xy^2 \right] = 4xy$$

$$f_{yx}(x,y) = \frac{\partial}{\partial x} \left[2x^2y + 3y^2 \right] = 4xy$$
$$f_{yy}(x,y) = 6y + 2x^2$$

$$f_{yy}(x,y) = 6y + 2x^2$$

Observación: Note que las derivadas parciales mixtas f_{xy} y f_{yx} en el ejemplo anterior son iguales. El siguiente teorema, obtenido por el matemático francés Alexis Clairaut (1713 -1765), da las condiciones bajo las cuales podemos afirmar que estas derivadas son iguales.

Teorema 3.4 (Teorema de Clairaut).

Sea $f:D\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ una función escalar donde D es un disco abierto con centro en (a,b) y radio δ , si las funciones f_{xy} y f_{yx} son continuas en D, entonces

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Ejemplo 3.9

Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función derivable y sea z = f(u) con $u = x^3y^4$. Entonces,

$$\frac{\partial z}{\partial x} = f'(u) \cdot \frac{3x^2}{2}y^4$$

$$\bullet \frac{\partial z}{\partial y} = f'(u) \cdot x^3 4 y^3$$

$$\bullet \frac{\partial^2 z}{\partial x^2} = f''(u) \cdot 3x^2 y^4 \cdot 3x^2 y^4 + 6xy^4 f'(u)$$

$$\bullet \frac{\partial^2 z}{\partial u \partial x} = f''(u) \cdot 4x^3 y^3 \cdot 3x^2 y^4 + 12x^2 y^3 f'(u)$$

$$\bullet \frac{\partial^2 z}{\partial x \partial y} = f''(u) \cdot 3x^2 y^4 \cdot 4x^3 y^3 + 12x^2 y^3 f'(u)$$

Las ecuaciones diferenciales en derivadas parciales se usan para expresar leyes físicas. Por ejemplo, la ecuación diferencial parcial $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$, se conoce como ecuación de Laplace, en honor a Pierre Laplace (1749 - 1827). Las soluciones de esta ecuación se llaman funciones armónicas y desempeñan un papel fundamental en las aplicaciones relacionadas con conducción de calor, flujo de fluidos y potencial eléctrico.

Compruebe que la función $u(x,y) = e^y \operatorname{sen} x$ satisface la ecuación de Laplace.

Solución: Las primeras derivadas parciales están dadas por

$$u_x = e^y \cos x$$
$$u_y = e^y \sin x$$

con lo cual

$$u_{xx} = -e^y \operatorname{sen} x$$
$$u_{yy} = e^y \operatorname{sen} x$$

de donde
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = -e^y \operatorname{sen} x + e^y \operatorname{sen} x = 0$$

Ejemplo 3.11

La ecuación de onda $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$, donde a es una constante, describe el movimiento de una onda, que puede ser una onda de sonido, una onda de luz o una onda que viaja a lo largo de una cuerda vibrante. Si f y g son funciones de una sola variable dos veces derivables, compruebe que la función u(x,t) = f(x+at) + g(x-at) satisface la ecuación de onda.

Solución: Las derivadas de u(x,y) con respecto a x están dadas por :

$$\frac{\partial u}{\partial x} = f'(x+at) + g'(x+at), \qquad \frac{\partial^2 u}{\partial x^2} = f''(x+at) + g''(x+at)$$

Las derivadas de u(x,y) con respecto a t están dadas por :

$$\frac{\partial u}{\partial t} = af'(x+at) + ag'(x+at), \qquad \frac{\partial^2 u}{\partial t^2} = a^2 f''(x+at) + a^2 g''(x+at)$$

Sustituyendo obtenemos

$$\frac{\partial^2 u}{\partial t^2} = a^2 f''(x + at) + a^2 g''(x + at) = a^2 [f''(x + at) + g''(x + at)] = a^2 \frac{\partial^2 u}{\partial x^2}$$

Consideremos f y g funciones de una sola variable dos veces derivables, compruebe que la función u(x,y) = xf(x+y) + yg(x+y) satisface la ecuación diferencial parcial $u_{xx} - 2u_{xy} + u_{yy} = 0$.

Solución: Las derivadas de u(x,y) con respecto a x están dadas por

$$u_x = f(x+y) + xf'(x+y) + yg'(x+y)$$

$$u_{xx} = f'(x+y) + f'(x+y) + xf''(x+y) + yg''(x+y) = 2f'(x+y) + xf'(x+y) + yg'(x+y)$$

$$u_{xy} = f'(x+y) + xf''(x+y) + g'(x+y) + yg''(x+y)$$

$$u_{y} = xf'(x+y) + g(x+y) + yg'(x+y)$$

$$u_{yy} = xf''(x+y) + g'(x+y) + g'(x+y) + yg''(x+y) = 2f''(x+y) + 2g'(x+y) + yg''(x+y)$$

Sustituyendo,

$$u_{xx} - 2u_{xy} + u_{yy} = 2f'(x+y) + xf''(x+y) + yg''(x+y) - 2f'(x+y) - 2xf''(x+y) - 2g'(x+y)$$
$$-2yg''(x+y) + xf''(x+y) + 2g'(x+y) + yg''(x+y) = 0$$

Ejemplo 3.13

Compruebe que la función $u(x,y)=(x^2+y^2+z^2)^{-\frac{1}{2}}$ satisface la ecuación diferencial de Laplace en derivadas parciales $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0$.

Solución: Calculemos las derivadas parciales

$$\frac{\partial u}{\partial x} = \frac{-2x}{2\sqrt{(x^2 + y^2 + z^2)^3}}, \quad \frac{\partial u}{\partial y} = -\frac{y}{(x^2 + y^2 + z^2)^{3/2}}, \quad \frac{\partial u}{\partial z} = -\frac{z}{(x^2 + y^2 + z^2)^{3/2}},$$

$$\frac{\partial u}{\partial x^2} = \frac{2x^2 - y^2 - z^2}{(x^2 + y^2 + z^2)^{5/2}}, \qquad \frac{\partial u}{\partial y^2} = -\frac{-x^2 + 2y^2 - z^2}{(x^2 + y^2 + z^2)^{5/2}}, \qquad \frac{\partial u}{\partial z^2} = -\frac{-x^2 - y^2 + 2z^2}{(x^2 + y^2 + z^2)^{5/2}}.$$

y al sumarlas obtenemos el resultado deseado.

Ejemplo 3.14 (Hipótesis en el Teorema de Clairaut).

Sea $f(x,y) = xy\frac{x^2 - y^2}{x^2 + y^2}$ y f(0,0) = 0. Se tiene $f_x(0,0) = f_y(0,0) = 0$, pero $f_{xy}(0,0) \neq f_{yx}(0,0)$. En efecto, aunque f_{xy} y f_{yx} están definidas en (0,0), no son continuas en este punto. Para ver esto, podemos calcular estas derivadas de dos maneras distintas y observar que el valor difiere. Primero derivamos sobre la recta x = 0 y luego sobre la recta y = 0.

$$z_{x}(0,y) = \lim_{h \to 0} \frac{f(h,y) - f(0,y)}{h} = \lim_{h \to 0} \frac{hy(h^2 - y^2)}{h(h^2 + y^2)} = -y \quad \text{y} \quad z_{x}(x,0) = \lim_{h \to 0} \frac{f(x,h) - f(x,0)}{h} = \lim_{h \to 0} \frac{hx(h^2 - y^2)}{h(h^2 + y^2)} = x$$

Ahora

$$z_{xy}(0,0) = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{h - 0}{h} = 1 \quad \text{y} \quad z_{yx}(0,0) = \lim_{k \to 0} \frac{f_x(0,k) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{-k - 0}{k} = -1$$

Esto muestra que $f_{xy}(0,0) \neq f_{yx}(0,0)$. El gráfico de f(x,y) muestra un salto en (0,0)

EJERCICIOS

3.7 Sea
$$f(x,y) = \frac{xy}{x^2 - y^2}$$
. Calcule $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial x}$ y $f_y(2,1)$.

3.8 Sea
$$f(x,y) = \ln^5(x^y + x^2 + 2^y)$$
 Calcule $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial x}$.

3.9 Sea
$$z(x,y) = 2(ax + by)^2 - (x^2 + y^2)$$
 con $a^2 + b^2 = 1$. Verifique que $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.

3.10 Sea
$$z = f\left(\frac{x^2}{y}\right)$$
 con f derivable. Verifique que $x\frac{\partial z}{\partial x} + 2y\frac{\partial z}{\partial y} = 0$.

3.11 Sea
$$z = \sqrt{xy + \arctan\left(\frac{y}{x}\right)}$$
. Demuestre que $zx\frac{\partial z}{\partial x} + zy\frac{\partial z}{\partial y} = xy$.

3.12 Sea
$$C(x,t) = t^{-1/2}e^{-x^2/kt}$$
. Verifique que esta función satisface la ecuación (de difusión)

$$\frac{k}{4} \cdot \frac{\partial^2 C}{\partial x^2} = \frac{\partial C}{\partial t}$$

3.13 Sea
$$z = f(x^2y + y) \cdot \sqrt{x + y^2}$$
. Calcule $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial x}$.

3.14 Verifique que
$$u(x,y) = e^y \operatorname{sen} x$$
 satisface la ecuación de Laplace $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

3.15 Sea
$$a \in \mathbb{R}$$
 una constante. Verifique que $u(x,t) = \text{sen}(x-at) + \ln(x+at)$ es solución de la ecuación de onda $u_{tt} = a^2 u_{xx}$.

^{3.16} Sea $a \in \mathbb{R}$ una constante y f y g funciones dos veces derivables. Verifique que u(x,t) = f(x-at) + g(x+at) es solución de la ecuación de onda $u_{tt} = a^2 u_{xx}$.

- **3.17** Verifique que $z = \ln(e^x + e^y)$ es solución de las ecuación diferencial $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$ y de la ecuación diferencial $\frac{\partial^2 z}{\partial x^2} \cdot \frac{\partial^2 z}{\partial y^2} \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0$.
- **3.18** Sea f una función derivable en todo \mathbb{R} y sea $w(x,y) = f(y \operatorname{sen} x)$. Verifique que

$$\cos(x) \frac{\partial w}{\partial x} + y \operatorname{sen}(x) \frac{\partial w}{\partial y} = yf'(y \operatorname{sen} x)$$

3.19 Sea $g(x,y) = x^2 \operatorname{sen}(3x - 2y)$. Verifique la identidad

$$x \cdot \frac{\partial^2 g}{\partial y \partial x} = 2 \frac{\partial g}{\partial y} + 6x \cdot g(x, y).$$

- 3.20 La resistencia total R producida por tres conductores con resistencias R_1 , R_2 y R_3 conectadas en paralelo en un circuito eléctrico está dado por la fórmula $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$. Calcule $\frac{\partial R}{\partial R_1}$. Sugerencia: derive a ambos lados respecto a R_1 .
- **3.21** La ley de gases para un gas ideal de masa fija m, temperatura absoluta T, presión P y volumen V es PV = mRT donde R es la constante universal de los gases ideales. Verifique que $\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P} = -1$.
- **3.22** La energía cinética de un cuerpo de masa m y velocidad v es $K = \frac{1}{2}mv^2$. Verifique que $\frac{\partial K}{\partial m} \frac{\partial^2 K}{\partial v^2} = K$.
- **3.23** Sea f y g funciones dos veces derivables. Sea $u = x^2 + y^2$ y $w(x,y) = f(u) \cdot g(y)$. Calcule $\frac{\partial w}{\partial x}$, $\frac{\partial^2 w}{\partial y \partial x}$ y $\frac{\partial w}{\partial y}$.
- **3.24** Sea f y g funciones dos veces derivables. Sea w(x,y) = f(u) + g(v) donde $u = \frac{x}{y} y v = \frac{y}{x}$. Calcule $\frac{\partial w}{\partial x}$, $\frac{\partial^2 w}{\partial y \partial x}$.
- **3.25** Sea $w = e^{3x} \cdot f(x^2 4y^2)$, donde f es una función derivable. Calcule $\frac{\partial^2 w}{\partial x \partial y}$.

3.6 Funciones diferenciables

En cálculo en una variable, la recta tangente a f en x_0 tiene ecuación $y = f(x_0) - f'(x_0)(x - x_0)$. Esta es una "buena aproximación" a f en las cercanías de $x = x_0$ en el sentido de que

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = 0,$$

es decir, la diferencia entre f(x) y la aproximación lineal se va para cero mucho más rápido que Δx .

Esta es la misma noción de 'buena aproximación' que se adopta en cálculo en varias variables. Por ejemplo, si $g: \mathbb{R}^2 \to \mathbb{R}$, reemplazamos f' por la derivada (matriz) de $g: \mathbf{D}g = (\partial g/\partial x \ \partial g/\partial y)_{1\times 2}$ y, en vez de una recta tangente, usamos el plano tangente (si hubiera)

$$z = g(x_0, y_0) + \mathbf{D}g(x_0, y_0)[(x \ y) - (x_0 \ y_0)]^T$$
$$= g(x_0, y_0) + \frac{\partial g}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial g}{\partial y}(x_0, y_0)(y - y_0)$$

En general, para funciones $g: \mathbb{R}^n \to \mathbb{R}^m$, reemplazamos la derivada g' de g por la derivada (matriz) $\mathbf{D}g = (\partial g_i/\partial x_i)_{m\times n}$ de $g = (g_1,...g_m)$ y la recta tangente por el 'plano tangente' $g(\mathbf{x_0}) + \mathbf{D}g(\mathbf{x_0})(\mathbf{x} - \mathbf{x_0})$.

3.7 Aproximación lineal para $f: \mathbb{R} \longrightarrow \mathbb{R}$

Una 'buena aproximación' a $f(x_0 + \Delta x)$ es $f(x_0) + f'(x_0)\Delta x$ si Δx es pequeño. Esto es así porque de acuerdo a la definición de la derivada,

$$f'(x_0) \approx \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Entonces,

$$\frac{\Delta y}{\Delta x} - f'(x_0) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0) = \mathbf{d}.$$

d es pequeño si Δx es pequeño. Multiplicando por Δx a ambos lados y reagrupando obtenemos,

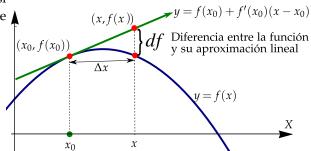


Figura 3.4: Aproximación lineal

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + d\Delta x$$

Conforme $\Delta x \to 0$, el término $d\Delta x$ se vuelve cada vez más y más pequeño; es decir, si $x = \Delta x + x_0$,

$$\lim_{\Delta x \to 0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{\Delta x} = 0$$

La recta $y = f(x_0) + f'(x_0)(x - x_0)$ es una función lineal llamada aproximación lineal de f en x_0 . Esta función lineal corresponde a la ecuación de la recta tangente a f en x_0 .

3.8 Aproximación lineal si $f: \mathbb{R}^2 \to \mathbb{R}$. Plano tangente.

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, en analogía con cálculo en una variable, una 'buena' aproximación lineal a f en (x_0, y_0) sería una función lineal $z = f(x_0, y_0) - \mathbf{D}f(x_0, y_0)[(x, y) - (x_0, y_0)]$ tal que

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-f(x_0,y_0)-\mathbf{D}f(x_0,y_0)[(x,y)-(x_0,y_0)]}{||(x,y)-(x_0,y_0)||}=0,$$

A Df se le llama la derivada de f. La función lineal $z = f(x_0, y_0) + Df(x_0, y_0)[(x, y) - (x_0, y_0)]$ corresponde al 'plano tangente' a f en (x_0, y_0) . Este plano existe si f es "suficientemente suave". En \mathbb{R}^3 un plano no vertical tiene ecuación

$$z = ax + by + c$$

Si este es el 'plano tangente' a f, las derivadas parciales en dirección de X y de Y deberían ser $a=\frac{\partial f}{\partial x}\Big|_{(x_0,y_0)}$ y $b=\frac{\partial f}{\partial y}\Big|_{(x_0,y_0)}$. Luego, como $z_0=z(x_0,y_0)=f(x_0,y_0)$ entonces $c=z_0-ax_0-by_0$. Sustituyendo en la ecuación del plano obtenemos la *aproximación lineal*

$$\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) = z - z_0$$
(3.1)

Notar como en el cambio en z contribuyen el cambio en x y el cambio en y. Esta sería la ecuación del plano tangente a f en (x_0, y_0) si f es 'suficientemente suave'. (Ver sección 3.18).

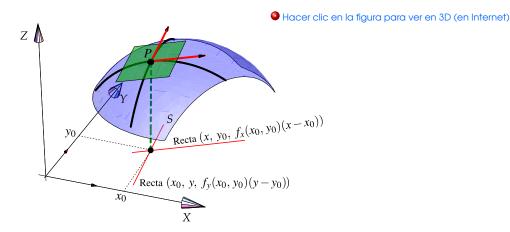


Figura 3.5: Plano tangente a *S* en *P*

Definición 3.4 (Función diferenciable en dos variables).

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$. Decimos que f es diferenciable (o localmente lineal) en (x_0, y_0) si las derivadas parciales existen en (x_0, y_0) y si

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - f(x_0,y_0) - \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) - \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)}{||(x,y) - (x_0,y_0)||} = 0$$

Ahora ya podemos hablar formalmente del plano tangente.

Definición 3.5 (Plano tangente).

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ diferenciable en (x_0, y_0) y sea $z_0 = f(x_0, y_0)$. El plano de ecuación

$$z-z_{0}=\frac{\partial f}{\partial x}(x_{0},y_{0})\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(x_{0},y_{0})\left(y-y_{0}\right)$$

se llama el plano tangente a la gráfica de f en (x_0, y_0) .

Además tenemos dos teoremas básicos,

Teorema 3.5 (Diferenciabilidad implica continuidad).

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ diferenciable en (x_0, y_0) entonces f es continua en (x_0, y_0) .

El siguiente teorema dice que si las derivadas parciales son continuas entonces f es diferenciable.

Teorema 3.6

Sea $f: U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$. Si las derivadas parciales de f existen y son continuas en un entorno de $(x_0, y_0) \in U$, entonces f es diferenciable en (x_0, y_0) .

Ejemplo 3.15

La función $f(x,y) = \frac{1}{x^2 + y^2}$ es diferenciable en todos los puntos excepto en $(x,y) \neq (0,0)$. En efecto, las derivadas parciales

$$\frac{\partial f}{\partial x} = \frac{-2x}{(x^2 + y^2)^2}$$

$$\frac{\partial f}{\partial y} = \frac{-2y}{(x^2 + y^2)^2}$$

son continuas excepto en x = 0 y y = 0, entonces f es diferenciable en todos los puntos excepto en (0,0); por el teorema (3.6)

3.9 Diferenciabilidad en el caso general.

En el caso de funciones $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ la definición y los teoremas sobre diferenciabilidad se generalizan de manera natural. La derivada de $f = (f_1, ..., f_m)$ en un punto $\mathbf{x_0} \in \mathbb{R}^n$ es la matriz $\mathbf{D}f = \left(\frac{\partial f_i}{\partial x_i}\right)_{m \times n}$ evaluada en $\mathbf{x_0}$.

Definición 3.6 (Función diferenciable).

 $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ con U un conjunto abierto. Decimos que f es diferenciable en $\mathbf{x_0} \in U$ si sus derivadas parciales existen en $\mathbf{x_0}$ y si

$$\lim_{x \to x_0} \frac{||f(x) - f(x_0) - Df(x_0)(x - x_0)||}{||x - x_0||} = 0,$$

 $\text{donde } \boldsymbol{D}f(\boldsymbol{x_0}) = \left(\frac{\partial f_i}{\partial x_i}(\boldsymbol{x_0})\right)_{m \times n} \text{ y } \boldsymbol{D}f(\boldsymbol{x_0})(\boldsymbol{x} - \boldsymbol{x_0}) \text{ es el producto de la matriz } \boldsymbol{D}f(\boldsymbol{x_0}) \text{ y el vector columna } (\boldsymbol{x} - \boldsymbol{x_0}).$

Si en esta definición ponemos $h = x - x_0$, una función $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ es diferenciable en x_0 si

$$\lim_{\boldsymbol{h}\to\boldsymbol{0}}\frac{1}{||\boldsymbol{h}||}\left|f(\boldsymbol{x_0}+\boldsymbol{h})-f(\boldsymbol{x_0})-\sum_{i=1}^n\frac{\partial f}{\partial x_i}(\boldsymbol{x_0})h_i\right|=0$$

que, por supuesto, coincide con la definición (3.4) en el caso n = 2.

Una función no diferenciable. El recíproco del teorema (3.6) es falso; hay funciones continuas para las cuales las derivadas parciales existen en un punto pero no son diferenciables en ese punto.

Derivadas parciales continuas implican diferenciabilidad pero diferenciabilidad solo puede implicar la existencia de las derivadas parciales dado que se requiere la derivada Df.

Aunque las derivadas parciales se pueden calcular como derivadas de una función de una variable, hay casos donde la derivada parcial existe y la derivada ordinaria (en el sentido del cálculo en una variable) no existe. Esto puede suceder pues los teoremas de cálculo de derivadas asumen que las derivadas existen.

Por ejemplo, si $f(x,y) = \sqrt[3]{x} \sqrt[3]{y}$, entonces

$$\frac{\partial f}{\partial x} = \frac{\sqrt[3]{y}}{3x^{2/3}} \quad y \quad \frac{\partial f}{\partial y} = \frac{\sqrt[3]{x}}{3y^{2/3}}.$$

En (0,0) las derivadas parciales se deben calcular por definición,

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0,$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0,$$

es decir, la derivada parcial $\frac{\partial f}{\partial x}$ existe en (0,0) y es cero y también $\frac{\partial f}{\partial y}(0,0) = 0$. Esta es una situación no muy

confortable; podríamos esperar que si tene-mos rectas tangentes de pendiente cero en (0,0) en la dirección del eje X y del eje Y, el plano que contiene estas rectas (es decir, el plano XY) debería ser tangente a la gráfica de la función en este punto, pero la figura de abajo parece sugerir que esto no sucede en la dirección de la recta y = x. En realidad, las derivadas parciales existen en (0,0) pero en este punto la función no es diferenciable.

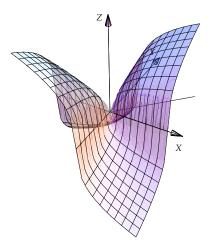


Figura 3.6: $f(x,y) = \sqrt[3]{x} \sqrt[3]{y}$

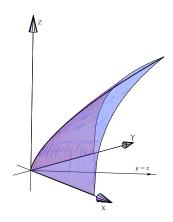


Figura 3.7: $f(x,y) = \sqrt[3]{x} \sqrt[3]{y}$ en el primer octante

3.10 Differencial total.

En una variable, $\Delta y = f(x_0 + \Delta x) - f(x_0)$ se puede aproximar con el diferencial $dy = f'(x_0) dx$. De manera similar, el cambio en f en dos variables es

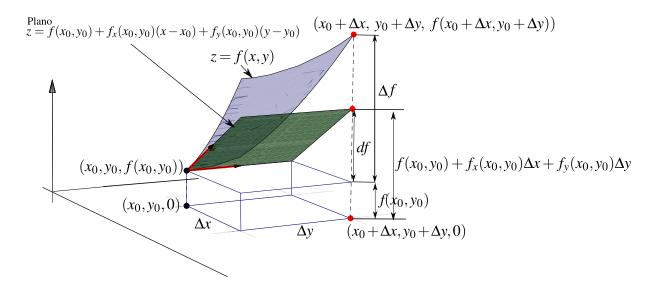
$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

y se puede aproximar con el diferencial total,

$$df = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$$

Es decir, si f es diferenciable en (x_0,y_0) y si $\Delta x = x - x_0$ y $\Delta y = y - y_0$ son pequeños, entonces f se puede aproximar usando el plano tangente:

$$f(x,y) \approx f(x_0,y_0) + f_x(x_0,y_0) \Delta x + f_y(x_0,y_0) \Delta y.$$



En realidad, si f es diferenciable en (x_0, y_0) ,

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

con $\epsilon_1, \epsilon_2 \to 0$ conforme $\Delta x, \Delta y \to 0$.

 Δx y Δy se puede reemplazar por los símbolos dx y dy como se hizo más arriba.

Si z = f(x,y) es diferenciable, el diferencial total df representa el incremento de f a lo largo del plano tangente a f en el punto (x,y). Sería como calcular con el plano tangente en vez de usar la superficie S (ver figura anterior).

En general, si $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ es diferenciable en $P = (x_1, x_2, ..., x_n)$, entonces el diferencial total es

$$df = f_{x_1} dx_1 + f_{x_2} dx_2 + \dots + f_{x_n} dx_n.$$

Como antes, df es una aproximación de Δf

Ejemplo 3.16

Podemos aproximar $e^{1.001}$ usando un diferencial total. Sea $f(x,y)=x^y$, como $e^{1.001}=f(e+0,1+0.001)$ entonces podemos tomar $x_0=e$, $y_0=1$, dx=0 y dy=0.001. Calculamos $df=yx^{y-1}dx+x^y\ln x\,dy$ y aplicamos la aproximación,

$$e^{1.001} \approx f(e,1) + f_x(e,1) \cdot 0 + f_y(e,1) \cdot 0.001$$

 $\approx e^1 + 1 \cdot 0 + e^1 \cdot 0.001$
 $\approx 2.721000110287504.$

El valor correcto es $e^{1.001} = 2.7210014698815783...$

Estimación del máximo error. Si u está en función de las variables (independientes) $x_1, x_2, x_3, ...$, es decir, si $u = f(x_1, x_2, x_3, ...)$; entonces podemos aproximar el *error máximo* en la cantidad u debido a los errores de medición (desconocidos) $\Delta x_1, \Delta x_2, \Delta x_3$, etc., en las variables $x_1, x_2, x_3, ...$ usando los valores máximos (conocidos) de los Δx_i 's. Es decir, el error $u(x_1 + \Delta x_1, ..., x_n + \Delta x_n) - u(x_1, ..., x_n)$ lo aproximamos con du usando los valores máximos del error.

Las dimensiones de una caja rectangular son 10cm, 25cm y 20cm con un *posible* error de 0.1cm en su medición. Si calculamos el volumen de la caja con estas medidas, ¿cuál es aproximadamente el error máximo (porcentualmente)?

Solución: El volumen de la caja es V(x,y,z)=xyz. Si los errores exactos son Δx , Δy y Δz entonces el volumen exacto sería $V(10+\Delta x, 25+\Delta y, 20+\Delta z)$. Como no conocemos Δx , Δy ni Δz , el error al calcular el volumen con V(10,25,20) es

$$V(10 + \Delta x, 25 + \Delta y, 20 + \Delta z) - V(10, 25, 20),$$

este error se puede aproximar con

$$dV = yz dx + xz dy + xy dz$$

usando los valores máximos del error, es decir, tomando $dx = \Delta x = 0.1$, $dy = \Delta y = 0.1$ y $dz = \Delta z = 0.1$,

$$V(10 + \Delta x, 25 + \Delta y, 20 + \Delta z) - V(10,25,20) \approx V_x(10,25,20) \cdot 0.1 + V_y(10,25,20) \cdot 0.1 + V_z(10,25,20) \cdot 0.1$$

 ≈ 95

Así, el error porcentual máximo en el cálculo del volumen es aproximadamente

$$\frac{dV}{V(10,25,20)} \times 100 = \frac{95}{5000} \times 100 = 1.9\%$$

3.11 Regla de la cadena.

Recordemos que en una variable, si f(u) y u(x) son derivables, entonces la regla de la cadena establece

$$\frac{df}{dx} = \frac{df}{du} \frac{du}{dx}$$

La regla de la cadena nos indica como varía f conforme recorremos la trayectoria u(x). Formalmente es la derivada de f en presencia de un cambio de variable u. En funciones de varias variables la relación persiste en el siguiente sentido: Si f y g son funciones diferenciables entonces $D(f \circ g)(x) = Df(g(x))Dg(x)$.

Teorema 3.7 (Regla de la cadena).

Sean $U \subset \mathbb{R}^n$ y $V \subset \mathbb{R}^m$ conjuntos abiertos. Sea $g: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ diferenciable y $f: V \subset \mathbb{R}^m \longrightarrow \mathbb{R}^p$ diferenciable. Supongamos que g(U) = V de tal manera que $f \circ g$ esté definida. Si g es diferenciable en \mathbf{x} y f es diferenciable en $\mathbf{y} = g(\mathbf{x})$, entonces $f \circ g$ es diferenciable en \mathbf{x} y

$$D(f \circ g)(\mathbf{x}) = Df(\mathbf{y})Dg(\mathbf{x})$$

donde Df(y)Dg(y) es el producto de la matrices $Df = (\partial f_i/\partial x_j)_{p\times m}$ y $Dg = (\partial g_i/\partial x_j)_{m\times n}$ evaluadas en y y x respectivamente. Este producto es una matriz de orden $p\times n$.

Para aplicar la regla de la cadena en general, calculamos el producto matricial

$$D(f \circ g) = DfDg = \begin{pmatrix} \partial f_1/\partial x_1 & \cdots & \partial f_1/\partial x_m \\ \vdots & \vdots & \vdots \\ \partial f_p/\partial x_1 & \cdots & \partial f_p/\partial x_m \end{pmatrix}_{p \times m} \begin{pmatrix} \partial g_1/\partial x_1 & \cdots & \partial g_1/\partial x_n \\ \vdots & \vdots & \vdots \\ \partial g_m/\partial x_1 & \cdots & \partial g_m/\partial x_n \end{pmatrix}_{m \times n}$$

Casos especiales. En estos casos, la regla de la cadena estable la razón de cambio de f sobre una trayectoria c(t) o en presencia de otro cambio de variable u = u(x,y), v = v(x,y).

z(t) = f(x(t), y(t))

Sean $\mathbf{c}: \mathbb{R} \longrightarrow \mathbb{R}^2$ y $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ diferenciables. Sea $z(t) = f(\mathbf{c}(t)) = f(x(t), y(t))$ con $\mathbf{c}(t) = (x(t), y(t))$. Entonces, $\mathbf{D}f = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix}$ y $\mathbf{D}\mathbf{c} = \begin{pmatrix} \frac{\mathrm{d}x}{\mathrm{d}t} & \frac{\mathrm{d}y}{\mathrm{d}t} \end{pmatrix}^T$ y el producto de las matrices es una matriz de orden 1×1 :

$$\mathbf{D}f\mathbf{D}\mathbf{c} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\mathrm{d}x}{\mathrm{d}t} \\ \frac{\mathrm{d}y}{\mathrm{d}t} \end{pmatrix}$$

Por lo tanto,

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} \tag{3.2}$$

z(x,y) = f(u(x,y), v(x,y)).

Sean $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ y $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ differenciables. Sea g(x,y) = (u(x,y),v(x,y)) y z(x,y) = f(u(x,y),v(x,y)). Entonces, $\mathbf{D}f = \begin{pmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \end{pmatrix}$ y $\mathbf{D}g = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$ y el producto de las matrices es una matriz de orden 1×2 . Por lo tanto,

$$\left(\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}\right)^{T} = \left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right) \left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}\right) \Longrightarrow \begin{cases}
\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} \\
\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y}
\end{cases}$$

Sea $z(x,y) = \sqrt{\arctan(y/x) + \tan(xy)}$. Podemos hacer un cambio de variable y calcular $\frac{\partial z}{\partial x}$ usando la regla de la cadena. Sea $u(x,y) = \arctan(y/x)$ y $v(x,y) = \tan(xy)$, entonces $z(x,y) = \sqrt{u+v}$.

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$$

$$= \frac{1}{2\sqrt{u+v}} \frac{1}{1+(y/x)^2} \cdot \frac{-y \cdot 1}{x^2} + \frac{1}{2\sqrt{u+v}} y \sec^2(xy)$$

Al sustituir u y v obtenemos el resultado completo, si fuera necesario.

Ejemplo 3.19

Sea $z(x,y) = x^2 + 3y^2$, donde $x = e^t$ y $y = \cos(t)$ entonces

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$
$$= 2xe^{t} - 6y \operatorname{sen}(t) = 2e^{2t} - 6\cos(t) \operatorname{sen}(t)$$

Ejemplo 3.20

Sea $z(u,v) = x^2 e^{y^3}$, donde x = uv y $y = u^2 - v^3$ entonces

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$

$$= 2xe^{y^3} \frac{\partial x}{\partial u} + 3x^2y^2e^{y^3} \frac{\partial y}{\partial u} = 2xe^{y^3}v + 3x^2y^2e^{y^3} \frac{\partial y}{\partial u}$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

$$= 2xe^{y^3} \frac{\partial x}{\partial v} + 3x^2y^2e^{y^3} \frac{\partial y}{\partial v} = 2xe^{y^3}u + 3x^2y^2e^{y^3} \cdot -3v^2$$

Sea f una función diferenciable y $z(x,y) = f(x^2,xy^2)$. Para derivar usando la regla de la cadena usamos el cambio de variable $u = x^2$ y $v = xy^2$, entonces z(x,y) = f(u,v) y

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$= \frac{\partial f}{\partial u} \cdot 2x + \frac{\partial f}{\partial v} \cdot y^2$$

$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} = \frac{\partial f}{\partial u} \cdot 0 + \frac{\partial f}{\partial v} \cdot 2xy$$

Ejemplo 3.22

Sea f una función derivable y z = f(x,y) con $x = r\cos\theta$, $y = r\sin\theta$, entonces

$$\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial x} \cdot -r \operatorname{sen} \theta + \frac{\partial f}{\partial y} r \cos \theta$$

Ejemplo 3.23

Sean f y g funciones diferenciables. Si $z(X,Y)=g(y)\cdot f(x-2y,y^3)$. Calcule z_x y z_{xy} .

Solución: Sea u = x - 2y, $v = y^3$. Entonces z(x,y) = g(y) f(u,v).

$$z_x = g(y) [f_u \cdot 1 + f_v \cdot 0] = g(y) f_u(u, v)$$

$$z_{xy} = g'(y) \cdot 1 \cdot f_u(u,v) + g(y) \left[-2 \frac{f_{uu}}{f_{uu}} + 3y^2 \frac{f_{uv}}{f_{uv}} \right]$$

Sea V = V(P,T). Si $P(V-b)e^{RV} = RT$, con b,R constantes, calcule $\frac{\partial V}{\partial T}$.

Solución: V es función de P y T. Derivamos a ambos lados respecto a T,

$$\frac{\partial}{\partial T} \left[P(V - b)e^{RV} \right] = \frac{\partial}{\partial T} \left[RT \right]$$

$$P\left[\frac{\mathbf{V_T}e^{RV} + (V - b)e^{RV}R\mathbf{V_T}}{}\right] = R$$

$$\therefore V_T = \frac{R}{Pe^{RV}(1+(V-b)R)}.$$

Ejemplo 3.25

Sea $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ diferenciable. Sea z(x,y) = g(u,v) con $u = x^2y^2$ y v = xy. Calcule $\frac{\partial^2 z}{\partial y \partial x}$.

Solución:

$$\frac{\partial z}{\partial x} = \frac{\partial g}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial g}{\partial u} \cdot 2xy^2 + \frac{\partial g}{\partial v} \cdot x$$

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left[\frac{\partial g(u, v)}{\partial u} \right] \cdot 2xy^2 + \frac{\partial}{\partial y} \left[2xy^2 \right] \cdot \frac{\partial g}{\partial u} + x \cdot \frac{\partial}{\partial y} \left[\frac{\partial g(u, v)}{\partial v} \right]$$

$$= \left[\frac{\partial^2 g}{\partial u^2} \cdot u_y + \frac{\partial^2 g}{\partial v \partial u} \cdot v_y\right] \cdot 2xy^2 + 4xy \cdot \frac{\partial g}{\partial u} + x \cdot \left[\frac{\partial^2 g}{\partial u \partial v} \cdot u_y + \frac{\partial^2 g}{\partial v^2} \cdot v_y\right]$$

$$= \left[\frac{\partial^2 g}{\partial u^2} \cdot 2yx^2 + \frac{\partial^2 g}{\partial v \partial u} \cdot x \right] \cdot 2xy^2 + 4xy \cdot \frac{\partial g}{\partial u} + x \cdot \left[\frac{\partial^2 g}{\partial u \partial v} \cdot 2yx^2 + \frac{\partial^2 g}{\partial v^2} \cdot x \right]$$

Decimos que una función f(x,y) es homogénea de grado n cuando $f(tx,ty)=t^nf(x,y)$, para todo t>0. Si f es diferenciable y homogénea de grado n entonces,

- a.) Sin hacer ningún cálculo, explique porqué se puede asegurar que $\frac{\partial}{\partial t} \left[t^{-n} f(tx, ty) \right] = 0.$
- b.) Use regla de la cadena para calcular $\frac{\partial}{\partial t} \left[t^{-n} f(tx, ty) \right]$ y deduzca que $u f_u(u, v) + v f_v(u, v) = n f(u, v)$.
- c.) Calcule $\frac{\partial f(x,y)}{\partial u}$ y $\frac{\partial f(x,y)}{\partial v}$ y verifique, usando el ejercicio anterior, que $xf_x(x,y) + yf_y(x,y) = nf(x,y)$.

Solución:

- a.) $\frac{\partial}{\partial t} [t^{-n} f(tx, ty)] = 0$ pues, como f es homogénea, entonces $[t^{-n} f(tx, ty)] = f(x, y)$, es decir el lado derecho de la igualdad es una función sólo de x e y.
- b.) Poniendo u=xt y v=yt entonces $\frac{\partial}{\partial t}\left[t^{-n}f(u,v)\right]=-nt^{-n-1}f(u,v)+t^{-n}\left(uf_u+vf_v\right)=0$ por lo que, multiplicando a ambos lados por t^{n+1} ,

$$u f_u(u,v) + v f_v(u,v) = n f(u,v)$$

c.) $\frac{\partial f(x,y)}{\partial u} = f_x \cdot \frac{1}{t}$ y $\frac{\partial f(x,y)}{\partial v} = f_y \cdot \frac{1}{t}$. Sustituyendo en la última relación del ejercicio anterior $xf_x(x,y) + yf_y(x,y) = nf(x,y)$

Ejemplo 3.27

Sea F(u,v) = -u - v con $u^2 = x - y$ y $v^2 = x + y$. Si $u \neq 0$ y $v \neq 0$, verifique

- a.) $F_{\mathbf{x}} = -\frac{u+v}{2uv}$
- b.) $F_{y} = -\frac{v u}{2uv}$.

Solución: Primero veamos que $2uu_x = 1$, $2vv_x = 1$, $2uu_y = -1$ y $2vv_y = 1$. Por lo tanto

- a.) $F_x = F_u u_x + F_v v_x = -1 \cdot \frac{1}{2u} 1 \cdot \frac{1}{2v} = -\frac{u+v}{2uv}$.
- b.) $F_y = F_u u_y + F_v v_y = -1 \cdot \left(-\frac{1}{2u} \right) -1 \cdot \frac{1}{2v} = -\frac{v u}{2uv}$.

EJERCICIOS

3.26 Sea
$$z = xy^2 + x$$
 con $x = \operatorname{sen} t$ y $y = \tan(t)$. Calcule $\frac{dz}{dt}$

3.27 Sea
$$w = x^2 + 2xy + y^2$$
 con $x = t\cos t$ y $y = t \operatorname{sen} t$. Calcule $\frac{dw}{dt}$.

3.28 Sea
$$z = u\sqrt{u + v^2}$$
 con $u = xy$ y $v = \arctan(y/x)$. Calcule $\frac{\partial z}{\partial x}$ y $\frac{\partial z}{\partial y}$.

Sea $z = g(y) \cdot f(x,y)$ con f y g funciones con derivadas de segundo orden.

a) Calcule
$$\frac{\partial z}{\partial x}$$

b) Calcule
$$\frac{\partial z}{\partial y}$$

c) Si
$$x = t^2$$
 y $y = u^2 + t^3$, calcule $\frac{\partial z}{\partial t}$ y $\frac{\partial z}{\partial u}$

3.30 Sea
$$z = f(xy, x)$$
. Si f tiene derivadas parciales de segundo orden f_u , f_{uv} , f_{uu} y f_{vv} , calcular $\frac{\partial^2 z}{\partial y \partial x}$.

3.31 Sea
$$z = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$
, donde $f = f(x,y)$ es una función con derivadas de segundo orden. Si $x = u^2 + v$ y $y = u + v^2$, calcule $\frac{\partial z}{\partial u}$ y $\frac{\partial z}{\partial v}$.

3.32 Sea z = f(u,v), donde $u = x^2 + y^2$, v = xy. Si f tiene derivadas parciales de segundo orden f_u , f_{uv} , f_{uu} y f_{vv} continuas (es decir, $f_{uv} = f_{vu}$). Verifique que:

$$\frac{\partial^2 z}{\partial x^2} = 2\frac{\partial f}{\partial u} + 4x^2 \frac{\partial^2 f}{\partial u^2} + 4xy \frac{\partial^2 f}{\partial u \partial v} + y^2 \frac{\partial^2 f}{\partial v^2}$$

3.12 Derivación implícita.

El teorema que sigue, conocido como el Teorema de la Función Implícita, nos da una manera sencilla de calcular las derivadas parciales de funciones definidas de manera implícita.

Una "región" en el plano XY es un conjunto con la propiedad de que cualquier par de puntos en el conjunto pueden ser unidos por una curva continua que no sale del conjunto. Un rectángulo sería un ejemplo de "región".

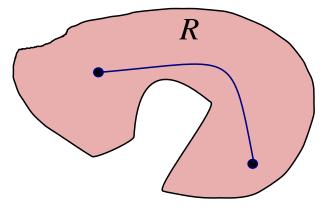


Figura 3.8: Una región *R*

Teorema 3.8 [De la Función Implícita (I).]

Sea z es una función de x y y, definida de manera implícita por la ecuación F(x,y,z)=0. Sea R una región que contiene al punto (x_0,y_0,z_0) en su interior. Entonces, si

- i.) $F(x_0, y_0, z_0) = 0$,
- ii.) Las derivadas parciales F_x , F_y , F_z son continuas en la región R
- iii.) $F_z(x_0, y_0, z_0) \neq 0$

existe un entorno I_0 del punto (x_0,y_0) en el cual hay una función diferenciable (única) z=f(x,y) tal que

- a.) $z_0 = f(x_0, y_0)$,
- b.) F(x, y, f(x, y)) = 0
- c.) $z_x = -\frac{F_x}{F_z}$ y $z_y = -\frac{F_y}{F_z}$

Este teorema dice que en un entorno del punto (x_0,y_0) existe una función f(x,y) cuya gráfica coincide con la gráfica de F(x,y,z)=0 en este entorno. Aunque no sea posible en principio hallar esta función f, por lo menos podemos calcular las derivadas parciales de esta función en el entorno del punto, según la fórmula que establece el teorema.

Podemos deducir, de manera informal, las fórmulas para z_x y z_y . Como F(x,y,z)=0,

$$dF = F_x dx + F_y dy + F_z dz = 0$$

de donde, si $F_z \neq 0$,

$$dz = -\frac{F_x}{F_z} dx - \frac{F_y}{F_z} dy$$

Ahora, si f(x,y) es un función de variables independientes,

$$df = P dx + Q dy \implies f_x = P \ y \ f_y = Q$$

entonces si z = f(x,y) (esta función f no es necesariamente conocida), podemos concluir que ³

$$z_x = -\frac{F_x}{F_z}$$
 y $z_y = -\frac{F_y}{F_z}$.

En el teorema de la función implícita podemos intercambiar variables. Por ejemplo, si x y z son las variables independientes y si se cumplen las hipótesis del teorema,

³Un análisis riguroso se puede encontrar en ([9], [8]). Ver "Teorema de la Función Implícita".

$$y_x = -\frac{F_x}{F_y} \quad \mathbf{y} \quad y_z = -\frac{F_z}{F_y}.$$

Este teorema se puede generalizar para ecuaciones F(x,y,z,u) = 0.

Ejemplo 3.28

Sea F(x,y,z) = xyz + x + y - z = 0. Sea $(x_0,y_0,z_0) = (0,0,0)$ entonces $F(x_0,y_0,z_0) = 0$. En los alrededores de este punto, $F_x = yz + 1$, $F_y = xz + 1$ y $F_z = xy - 1$ son continuas y $F_z(0,0,0) \neq 0$.

Se garantiza entonces que, en los alrededores de (0,0), en el plano xy, existe una función z = f(x,y) cuya gráfica coincide con la gráfica de F(x,y,z) = 0 en este entorno, y

$$z_{\mathbf{x}} = -\frac{F_{\mathbf{x}}}{F_{\mathbf{z}}} = -\frac{zy+1}{xy-1}$$

$$z_{\mathbf{y}} = -\frac{F_{\mathbf{y}}}{F_{z}} = -\frac{zx+1}{xy-1}$$

Ejemplo 3.29

Calcule z_x y z_y si $F(x,y,z) = x^2 - 2y^2 + 3z^2 - yz + y = 0$, cuando $F_z \neq 0$.

Solución: Dado que $F_x = 2x$, $F_y = -4x - z + 1$, $F_z = 6z - y$, entonces si $F_z \neq 0$, por el teorema de la función implícita existe una función z = f(x,y) tal que

$$z_{\mathbf{x}} = -\frac{2x}{6z - y}$$

$$z_{\mathbf{y}} = -\frac{1 - 4y - z}{6z - y}$$

en
$$\mathbb{R}^2 - \{(x,y) \in \mathbb{R}^2 : 6z(x,y) - y = 0.\}$$

Considere $x^2 + y^2 + z^2 - 1 = 0$. Esta ecuación es satisfecha por todos los puntos de la esfera de radio 1 centrada en el origen. Las derivadas parciales de $F(x,y,z) = x^2 + y^2 + z^2 - 1$ son continuas en cualquier entorno de estos puntos pues

$$F_x = 2x$$
, $F_y = 2y$, y $F_z = 2z$

entonces en un entorno de cualquiera de los puntos (x_0, y_0) (con $F(x_0, y_0, z_0) = 0$), excepto en los puntos del círculo $x^2 + y^2 = 1$, z = 0,

$$z_x = -\frac{F_x}{F_z} = -\frac{x}{z}$$
 y $z_y = -\frac{F_y}{F_z} = -\frac{y}{z}$

Podemos además calcular z_{xy} , z_{xx} y z_{yy}

$$z_{xx} = \frac{\partial(z_x)}{\partial x} = -\frac{z - xz_x}{z^2} = -\frac{z - x\left(-\frac{x}{z}\right)}{z^2}, \qquad z_{yy} = -\frac{y^2 + z^3}{z^3}, \qquad z_{yx} = \frac{\partial(z_y)}{\partial x} = \frac{y \cdot z_x}{z^2} = \frac{y\left(-\frac{x}{z}\right)}{z^2}.$$

Ejemplo 3.31

Si F(xz,yz) = 0 define a z como función implícita de x e y y además cumple con las condiciones del teorema de la función implícita en cada punto de una región R, entonces verifique que, en R, se satisface la ecuación

$$y \cdot \frac{\partial z}{\partial y} + x \cdot \frac{\partial z}{\partial x} = -z$$

Solución: Sea u = xz y v = yz, entonces F(xz,yz) = F(u,v) = 0.

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{F_u \cdot 0 + F_v \cdot z}{F_u \cdot x + F_v \cdot y}$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{F_u \cdot z + F_v \cdot 0}{F_u \cdot x + F_v \cdot y}$$

Luego

$$y \cdot \frac{\partial z}{\partial y} + x \cdot \frac{\partial z}{\partial x} = -y \cdot \frac{F_v \cdot z}{F_u \cdot x + F_v \cdot y} + -x \cdot \frac{F_u \cdot z}{F_u \cdot x + F_v \cdot y}$$
$$= -\frac{z (F_u \cdot x + F_v \cdot y)}{F_u \cdot x + F_v \cdot y}$$
$$= -z$$

3.13 Derivación implícita. Caso de dos ecuaciones.

En el caso de que tengamos dos ecuaciones

$$F(x,y,u,v) = 0$$
 y $G(x,y,u,v) = 0$

tenemos una teorema similar

Teorema 3.9 [De la Función Implícita (II).]

Sea R una región que contiene al punto (x_0, y_0, u_0, v_0) en su interior. Entonces, si

- i.) $F(x_0, y_0, u_0, v_0) = 0$ y $G(x_0, y_0, u_0, v_0) = 0$
- ii.) F_x , F_y , F_u , F_v , G_x , G_y , G_u , G_v son continuas en la región R

iii.)
$$J = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix} \neq 0 \text{ en } (x_0, y_0, u_0, v_0),$$

Continuación...

existe un entorno I_0 del punto (x_0, y_0) en el cual

$$u_x = -\frac{\frac{\partial(F,G)}{\partial(x,v)}}{\frac{\partial(F,G)}{\partial(u,v)}} \qquad v_x = -\frac{\frac{\partial(F,G)}{\partial(u,x)}}{\frac{\partial(F,G)}{\partial(u,v)}} \qquad y \qquad u_y = -\frac{\frac{\partial(F,G)}{\partial(y,v)}}{\frac{\partial(F,G)}{\partial(u,v)}} \qquad v_y = -\frac{\frac{\partial(F,G)}{\partial(u,y)}}{\frac{\partial(F,G)}{\partial(u,v)}}$$

Para deducir las expresiones para u_x, u_y, v_x, v_y se resuelve el sistema

$$\begin{cases} dF = F_x dx + F_y dy + F_u du + F_v dv = 0 \\ dG = G_x dx + G_u dy + G_u du + G_v dv = 0 \end{cases}$$

para du y dv. Por ejemplo

$$du = -\frac{1}{J} \begin{vmatrix} F_x & F_v \\ G_x & G_v \end{vmatrix} dx - \frac{1}{J} \begin{vmatrix} F_y & F_v \\ G_y & G_v \end{vmatrix} dy$$

como $du = u_x dx + u_y dy$ entonces se obtienen las fórmulas para u_x y u_y .

Las ecuaciones

$$F = u^2 + v^2 - x^2 - y = 0$$

$$G = u + v - x^2 + y = 0$$

son satisfechas por $(x_0, y_0, u_0, v_0) = (2, 1, 1, 2)$. Como

$$J = \left| \begin{array}{cc} F_u & F_v \\ G_u & G_v \end{array} \right| = \left| \begin{array}{cc} 2u & 2v \\ 1 & 1 \end{array} \right| = 2(u - v)$$

entonces en $J(2,1,1,2) = -2 \neq 0$. En un entorno de $(x_0,y_0) = (2,1)$ se tiene

$$u_x = \frac{x(1-2v)}{u-v}$$
 y $u_y = \frac{1+2v}{2(u-v)}$.

Ejemplo 3.33

Sea z = f(x,y) definida por z = u + v donde u = u(x,y) y v = v(x,y) son funciones definidas de manera implícita por las ecuaciones

$$F = u + e^{u+v} - x = 0$$

 $G = v + e^{u-v} - y = 0$

Si u = v = 0 entonces x = y = 1. Calcular $z_x(1,1)$.

Solución: $z_x = u_x + v_y$. Podemos calcular u_x y v_y usando las fórmulas respectivas, sin embargo, para cálculos numéricos es más práctico derivar respecto a x las expresiones F = 0 y G = 0. En efecto, derivando respecto a x obtenemos

$$u_x + e^{u+v}(u_x + v_x) - 1 = 0$$
 y $v_x + e^{u-v}(u_x - v_x) = 0$

de modo que cuando x = 1, y = 1, v = u = 0 se obtiene

$$2u_x + v_x - 1 = 0$$
 y $u_x = 0$

con lo que $u_x = 0$ $v_x = 1$ si x = 1, y = 1, v = u = 0. Así que $z_x(1,1) = 0 + 1 = 1$.

3.33 Si $x^2y^2 + \text{sen}(xyz) + z^2 = 4$ define a z como función implícita de x e y, verifique que

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 0.$$

3.34 Sea $g\left(\frac{xy}{z}, x^2 + y^2\right) = 0$ una ecuación que define a z como una función de x e y. Verifique que si g_x, g_y y g_z existen y son continuas en toda la región en la que $g_z \neq 0$, entonces

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = -\frac{z(x^2 - y^2)}{xy}$$

3.35 Sea z = f(z/xy) con f dos veces derivable. Calcule $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ y verifique que

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 0.$$

3.36 Sea $z = x \ln(yz)$. Calcule $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$ y $\frac{\partial^2 z}{\partial x \partial y}$.

3.37 Sea $z = f(x^2 - y, xy)$ donde $s = x^2 - y$ y t = xy. Calcule $\frac{\partial f}{\partial t}$ y $\frac{\partial f}{\partial s}$.

3.14 Gradiente.

Recordemos que en una variable $f(p + \Delta x) = f(p) + f'(\xi)\Delta x$ para algún ξ entre p y Δx .

Sea $f: \mathbb{R}^n \to \mathbb{R}$. El gradiente de f, $\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$ sería el análogo de la derivada ordinaria. En cada punto

 \boldsymbol{x} , el gradiente describe como el campo escalar f cambia con la posición. Si f es continuamente diferenciable en un entorno de \boldsymbol{p} , entonces

$$f(\pmb{p}+\Delta\pmb{x})-f(\pmb{p})=\nabla f(\xi)\cdot\Delta\pmb{x}\quad \text{ con }\ \xi=\pmb{p}+\theta\pmb{x},\ \text{ para algún }\ 0\leq\theta\leq1.$$

Definición 3.7 (Campo Gradiente).

Sea $f:D\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}$ una función (o campo) escalar diferenciable en una región R, entonces la función (o campo) gradiente de f es la función vectorial $\nabla f:R\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}$ definida por

$$\nabla f(x_1, x_2, ..., x_n) = (f_{x_1}, f_{x_2}, ..., f_{x_n})$$

En el caso $f:D\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$

$$\nabla f(x,y) = (f_x, f_y) = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath}$$

En el caso $f: D \subseteq \mathbb{R}^3 \longrightarrow \mathbb{R}$

$$\nabla f(x,y,z) = (f_x, f_y f_z) = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath} + \frac{\partial f}{\partial z} \hat{k}$$

Una interpretación geométrica la puede encontrar más adelante en las figuras 3.13, 3.14

Ejemplo 3.34

• Si $f(x,y) = \operatorname{sen} xy + x^2y^2$, calcule $\nabla f(\pi,1)$.

Solución: El gradiente está dado por :

$$\nabla f(x,y) = (y\cos xy + 2xy^2)\,\,\widehat{\imath} + (x\cos xy + 2x^2y)\,\,\widehat{\jmath}$$

y evaluando

$$\nabla f(\pi,1) = (2\pi - 1)\,\hat{\imath} + (2\pi^2 - \pi)\,\hat{\jmath}$$

• Si $x^2 + y^2 + z^2 = 1$, calcule $\nabla z(x, y)$.

Solución: Excepto en la circunferencia $x^2 + y^2 = 1$ (curva de nivel z = 0), se puede calcular

$$\nabla f(x,y) = \left(-\frac{F_{\mathbf{x}}}{F_{\mathbf{z}}}, -\frac{F_{\mathbf{y}}}{F_{\mathbf{z}}},\right) = -\frac{x}{z}\,\,\hat{\imath} + -\frac{y}{z}\,\,\hat{\jmath}$$

3.15 Derivada direccional

Suponga que deseamos calcular la tasa de cambio de z=f(x,y) en el punto (x_0,y_0) en la dirección de un vector unitario arbitrario $\overrightarrow{u}=(a,b)$, para esto consideremos la superficie S con ecuación z=f(x,y) (la gráfica de f) y sea $z_0=f(x_0,y_0)$. Entonces el punto $P=(x_0,y_0,z_0)$ pertenece a S. El plano vertical generado por la recta L que pasa por el punto $(x_0,y_0,0)$ en la dirección del vector \overrightarrow{u} , interseca a la superficie S en la curva C. La pendiente de la recta tangente T a la curva C en el punto P es la tasa de cambio de z en la dirección del vector \overrightarrow{u} .

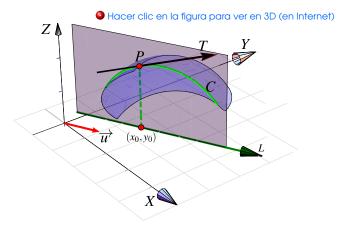


Figura 3.9: Derivada direccional

Sea Q = (x,y,z) otro punto sobre la curva C, y sean $P' = (x_0,y_0)$ y $Q' = P' + h \overrightarrow{u}$ las proyecciones ortogonales sobre el plano XY de los puntos P y Q, entonces

$$\overrightarrow{P'Q'} = Q' - P' = h \overrightarrow{u}$$

para algún escalar h. Así pues,

$$x - x_0 = ha \Longrightarrow x = x_0 + ha$$

 $y - y_0 = hb \Longrightarrow y = y_0 + hb$

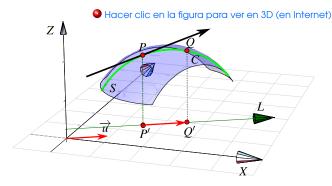


Figura 3.10: $||\overrightarrow{P'Q'}|| = h||\overrightarrow{u}||$

El cambio sobre recta L es $||\overrightarrow{P'Q'}|| = h||\overrightarrow{u}|| = h$ (\overrightarrow{u} es unitario), por tanto la razón de cambio está dada por

$$\frac{\Delta z}{h||\overrightarrow{u}||} = \frac{\Delta z}{h} = \frac{z - z_0}{h} = \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

y al tomar el límite cuando $h\longrightarrow 0$ (siempre y cuando este límite exista) obtenemos la tasa de cambio instantánea de z (con respecto a la distancia) en la dirección de \overrightarrow{u} , la cual se llama derivada direccional de f en la dirección de \overrightarrow{u} .

Definición 3.8 (Derivada direccional).

Sea $f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ una función escalar y sean $(x_0, y_0) \in D$ y $\overrightarrow{u} = (a, b)$ un vector *unitario*, entonces la derivada direccional de f en (x_0, y_0) en la dirección del vector unitario \overrightarrow{u} , está dada por :

$$D_{\overrightarrow{u}}f(x_0,y_0) = \lim_{h\to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0,y_0)}{h}$$

Observación: Al comparar la definición de derivada parcial con la de derivada direccional, podemos notar que si $\overrightarrow{u} = (1,0)$ entonces $D_{\overrightarrow{u}}f(x_0,y_0) = f_x(x_0,y_0)$ y si $\overrightarrow{u} = (0,1)$ entonces $D_{\overrightarrow{u}}f(x_0,y_0) = f_y(x_0,y_0)$, es decir, las derivadas parciales son derivadas direccionales en la dirección de los vectores canónicos.

Cálculo. Con propósitos de cálculo, la definición de derivada direccional que está más arriba no es muy útil. Como estamos derivando f sobre una trayectoria L, podemos usar la regla de la cadena (sección 3.11) para obtener una fórmula más simple.

Sean
$$\mathbf{x} = (\mathbf{x_0}, \mathbf{y_0})$$
, $\mathbf{u} = \overrightarrow{u} = (a, b)$ y $\mathbf{L}(\mathbf{h}) = \mathbf{x} + h\mathbf{u}$, entonces $\mathbf{L}(\mathbf{0}) = \mathbf{x}$, $\mathbf{L}'(\mathbf{h}) = \mathbf{u}$ y

$$f(x_0 + ha, y_0 + hb) = f(x + hu) = f(L(h))$$

usando regla de la cadena,

$$D_{\overrightarrow{u}}f(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0,y_0)}{h} \text{ pues } ||(x_0,y_0) - [(x_0,y_0) + h\overrightarrow{u}]|| = h||\overrightarrow{u}|| = h,$$

$$= \frac{d}{dh}f(L(h))\Big|_{h=0} = \nabla f(L(h)) \cdot L'(h)\Big|_{h=0} = \nabla f(x) \cdot u$$

Teorema 3.10

Sea $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ una función escalar diferenciable en D, entonces f tiene derivada direccional en la dirección de cualquier vector no nulo $\overrightarrow{u} = (a,b)$ y está dada por:

$$D_{\overrightarrow{u}}f(x,y) = \nabla f(x,y) \cdot \frac{\overrightarrow{u}}{||\overrightarrow{u}||} = f_x(x,y) \frac{a}{||\overrightarrow{u}||} + f_y(x,y) \frac{b}{||\overrightarrow{u}||}$$

Componente. Recuerdemos que la componente de \overrightarrow{v} en la dirección de \overrightarrow{u} es $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||u||}$, esta componente es la longitud de la proyección vectorial de \overrightarrow{v} sobre \overrightarrow{u} $\left(\text{proy} \overrightarrow{\overrightarrow{v}} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||u||} \overrightarrow{u}\right)$. Con lo cual, la fórmula $D_{\overrightarrow{u}} f(x,y) = \nabla f(x,y) \cdot \frac{\overrightarrow{u}}{||\overrightarrow{u}||}$

nos dice que la derivada direccional es la componente del vector gradiente

 $\nabla f(P)$ en la dirección del vector \overrightarrow{u}

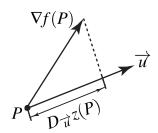


Figura 3.11

Ejemplo 3.35

Calcule la derivada direccional $D_{\overrightarrow{u}}f(x,y)$ si $f(x,y)=x^3-3xy+4y^2$ y $\overrightarrow{u}=(\cos\theta,\sin\theta)$ con $\theta=\frac{\pi}{6}$. Cálcule $D_{\overrightarrow{u}}f(1,2)$.

Solución: Usando el resultado del teorema anterior

$$D_{\overrightarrow{u}}f(x,y) = f_x(x,y)\cos\left(\frac{\pi}{6}\right) + f_y(x,y)\sin\left(\frac{\pi}{6}\right)$$
$$= (3x^2 - 3y)\frac{\sqrt{3}}{2} + (-3x + 8y)\frac{1}{2}$$
$$= \frac{1}{2}\left(3\sqrt{3}x^2 - 3\sqrt{3}y - 3x + 8y\right)$$

de donde
$$D_{\overrightarrow{u}}f(1,2) = \frac{1}{2}(3\sqrt{3} - 6\sqrt{3} - 3 + 16) = \frac{13 - 3\sqrt{3}}{2}$$

Calcule la derivada direccional de $D_{\overrightarrow{u}}f(x,y,z)$ si f(x,y,z)=x sen(yz), en el punto P=(1,3,0) en la dirección del vector $\overrightarrow{v}=\widehat{\imath}+2\widehat{\jmath}-\widehat{k}$.

Solución: El vector gradiente de la función f esta dado por

$$\nabla f(x,y,z) = (\operatorname{sen}(yz), xz \cos(yz), xy \cos(yz))$$

evaluando en P tenemos que $\nabla f(1,3,0)=(0,0,3)$. Por otro lado un vector unitario en la dirección de \overrightarrow{v} es

$$\overrightarrow{u} = \frac{1}{\sqrt{6}}\,\widehat{\imath} + \frac{2}{\sqrt{6}}\,\widehat{\jmath} - \frac{1}{\sqrt{6}}\,\widehat{k}$$

Por tanto

$$D_{\overrightarrow{u}}f(1,3,0) = \nabla f(1,3,0) \cdot \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right) = -\sqrt{\frac{3}{2}}$$

Suponga que tenemos una función f de dos o de tres variables y consideramos todas las posibles derivadas direccionales de f en un punto P dado. Esto proporciona las tasas de cambio de f en todas las posibles direcciones. De modo que podemos plantear la siguiente pregunta : ¿En cuál de estas direcciones f cambia con mayor velocidad?, y ¿cuál es la máxima razón de cambio?. Las respuestas a estas preguntas las da el siguiente teorema.

Teorema 3.11 (Dirección de máximo cambio).

Sea $f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ una función escalar. El valor máximo de la derivada direccional $D_{\overrightarrow{u}}f(x,y)$ es $||\nabla f(x,y)||$ y se presenta cuando el vector no nulo \overrightarrow{u} tiene la misma dirección que el vector gradiente $\nabla f(x,y)$.

Podemos justificar esto, informalmente, de la manera que sigue. Primero recordemos que si $\theta = \angle u, v$ entonces $u \cdot v = ||u|| \cdot ||v|| \cos(\theta)$. Ahora

$$D_{\overrightarrow{u}}f(x,y) = \nabla f(x,y) \cdot \frac{\overrightarrow{u}}{||\overrightarrow{u}||}$$
$$= ||\nabla f(x,y)|| \cos \theta \theta.$$

donde θ es el ángulo entre el vector *unitario* $\frac{\overrightarrow{u}}{||\overrightarrow{u}||}$ y el vector $\nabla f(x,y)$.

El valor de $D_{\overrightarrow{u}}f(x,y)$ aumenta o disminuye solo si $\cos\theta$ cambia (si giramos el vector \overrightarrow{u}).

Así que el máximo valor se obtiene cuando $\cos\theta=1$ (es decir $\theta=0$). Por tanto $D_{\overrightarrow{u}}f(x,y)$ es máxima cuando $\theta=0$ y en ese caso \overrightarrow{u} y $\nabla f(x,y)$ son paralelos.

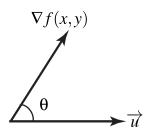


Figura 3.12

Campo gradiente. El gradiente $\nabla z : \mathbb{R}^2 \to \mathbb{R}^2$ es un campo vectorial (campo gradiente). Por ejemplo, consideremos el paraboloide $z-1=x^2+y^2$, el campo gradiente de z es $\nabla z=(2x,2y)$. Una representación gráfica de esta superficie y de algunos vectores (trasladados) se ve en la figura 3.13. Los vectores apuntan en la dirección de crecimiento del paraboloide y la magnitud de estos vectores nos dan una medida de la 'intensidad' de esta razón de cambio.

Ahora consideremos el paraboloide $z-3=-x^2-y^2$, el campo gradiente de z es $\nabla z=(-2x,-2y)$. Una representación gráfica de esta superficie y de algunos vectores (trasladados) se ve en la figura 3.14. Los vectores apuntan en la dirección de decrecimiento del paraboloide y la magnitud de estos vectores nos dan una medida de la 'intensidad' de esta razón de cambio

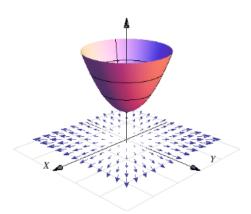


Figura 3.13: $\nabla z(P)$ apunta en la dirección de crecimiento respecto a P

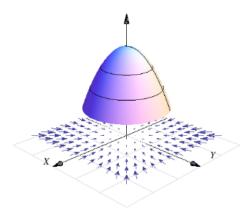


Figura 3.14: $\nabla z(P)$ apunta en la dirección de decrecimiento respecto a P

Valor mínimo: El valor mínimo de la derivada direccional es $-||\nabla f(x,y)||$ y ocurre cuando \overrightarrow{u} tiene la dirección $-\nabla f(x,y)$.

Observación: f se mantiene constante sobre las curvas de nivel; la dirección (un vector $\overrightarrow{\boldsymbol{u}}$) en la que el cambio (instantáneo) de f respecto a P es nulo es la dirección de un vector perpendicular a $\nabla f(P)$. Que la derivada direccional se anule en P en la dirección de $\overrightarrow{\boldsymbol{u}}$ no significa, por supuesto que en esta dirección la función se mantenga constante (esto solo pasa sobre las curvas de nivel) excepto que la curva de nivel sea una recta.

Suponga que la temperatura en un punto (x,y,z) en el espacio está dada por

$$T(x,y,z) = \frac{80}{1 + x^2 + 2y^2 + 3z^2}$$

donde T está medida en grados centígrados y x,y,z están en metros. ¿En qué dirección aumenta más rápido la temperatura respecto al punto (1,1,-2)? ¿Cuál es la máxima tasa de incremento?

Solución: El gradiente de *T* es

$$\nabla T(x,y,z) = -\frac{160x}{(1+x^2+2y^2+3z^2)^2} \,\widehat{\imath} - \frac{320y}{(1+x^2+2y^2+3z^2)^2} \,\widehat{\jmath} - \frac{480z}{(1+x^2+2y^2+3z^2)^2} \,\widehat{k}$$

Evaluando en el punto P = (1,1,-2) obtenemos $\nabla T(1,1,-2) = \frac{5}{8} \left(-\hat{\imath} - 2\hat{\jmath} + 6\hat{k} \right)$

Por tanto, la temperatura se incrementa con mayor rapidez en la dirección del vector gradiente

$$\overrightarrow{v} = -\widehat{\imath} - 2\widehat{\jmath} + 6\widehat{k}$$

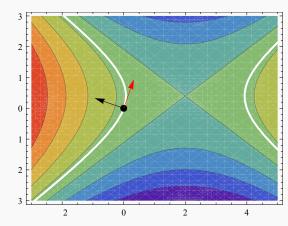
La tasa máxima de incremento es la longitud del vector gradiente $||\nabla T(1,1,-2)|| = \frac{5}{8} \left| \left| -\hat{\imath} - 2\hat{\jmath} + 6\hat{k} \right| \right| = \frac{5\sqrt{41}}{8}$

Ejemplo 3.38

Considere la placa rectangular que se muestra en la figura de la derecha. Si la temperatura en un punto (x,y) de la placa está dada por

$$T(x,y) = 4(x-2)^2 - 7(y-0.4)^2$$

determine la dirección en la que debe de ir un insecto que está en el punto P = (0,0), para que se caliente lo más rápidamente. ¿Y qué debe hacer el insecto si desea ir por un camino en el que la temperatura se mantenga constante?



Solución: La dirección en la que la temperatura aumenta más rápidamente respeto a *P* es la dirección del gradiente

(vector negro en la figura): $\nabla T(x,y) = (8(x-2), -14(y-0.4)) \Longrightarrow \nabla T(0,0) = (-16,5.6)$

Ejemplo 3.38 (continuación).

En cuanto a la otra pregunta, aunque la derivada direccional es nula en la dirección de un vector perpendicular al gradiente (vector rojo en la figura) esto solo dice que la razón de cambio instántaneo en esa dirección es cero. La trayectoria en la que la temperatra se mantiene constante es la curva de nivel T(x,y) = T(0,0) (curvas blancas). Es por ahí donde debería caminar el insecto.

3.16 Vector unitario tangente.

Sea $r: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$. Si la función vectorial r es continua en I, entonces la gráfica de r se le llama *curva* y decimos que esta curva esta descrita paramétricamente por r(t).

Por ejemplo,

Rectas en \mathbb{R}^3 . Si la recta L pasa por P en dirección de \overrightarrow{u} entonces $r(t) = P + t \overrightarrow{u}$, $t \in \mathbb{R}$.

Elipse. Consideremos la elipse $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$. Una parametrización es

$$r(t) = (h + a\cos(t))\hat{\imath} + (k + b\sin(t))\hat{\jmath}, t \in [0,2\pi]$$

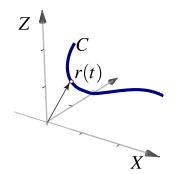


Figura 3.15: r(t) parametriza C

Derivada. La derivada de r (si existe) es $r'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h}$. Si x(t) y y(t) son funciones derivables en I y si $r(t) = x(t) \hat{\imath} + y(t) \hat{\jmath}$, entonces $r'(t) = x'(t) \hat{\imath} + y'(t) \hat{\jmath}$.

Z r(t) r'(t) (traslación)

Figura 3.16: Vector tangente r'(t).

La interpretación geométrica de r'(t) sugiere la siguiente definición

Hacer clic en la figura para ver en 3D (en Internet)

Definición 3.9

Sea C una curva descrita por la función vectorial continua r(t), $t \in I$. Si existe la derivada r'(t) y no es nula, la recta que pasa por r(t) y es paralela a r'(t) se llama tangente a C en r(t). El vector r'(t) se denomina vector tangente a C en r(t). El vector unitario tangente T es una función vectorial asociada a la curva C y se define como

$$\overrightarrow{T}(t) = \frac{r'(t)}{||r'(t)||}, \text{ si } ||r'(t)|| \neq 0$$

3.17 Gradiente, curvas y superficies de nivel.

Recordemos que si z = f(x,y) entonces la curva z = c (es decir c = f(x,y)) la llamamos curva de nivel. Si tenemos w = g(x,y,z), la superficie w = 0 (es decir 0 = g(x,y,z)), se denomina *superficie de nivel* w = 0.

Si S es una superficie de ecuación G(x,y,z) = 0, con G derivable con continuidad en el plano, y si $P = (x_0,y_0,z_0) \in S$, entonces,

1. Si se cumplen las condiciones del teorema de la función implícita en P se tiene, $\nabla z(x,y) = \left(-\frac{G_x}{G_z}, -\frac{G_y}{G_z}\right)$

El vector $\nabla z(x_0, y_0)$ es perpendicular a la curva de nivel $z = z_0$, es decir $\nabla z(x_0, y_0)$ es perpendicular al vector tangente en (x_0, y_0) . Si necesitamos un vector perpendicular, podríamos usar solamente $(-G_x, -G_y)$.

Por supuesto, si la ecuación de la superficie es z = f(x,y), podemos calcular el gradiente de la manera usual tomando G = z - f(x,y) = 0 y entonces $G_z = 1$.

2. El vector $\nabla G(x_0, y_0, z_0)$ es perpendicular a la superficie de nivel w = 0, es decir $\nabla G(x_0, y_0, z_0)$ es perpendicular a cada curva de la superficie S, que pasa por $P = (x_0, y_0, z_0)$.

Ejemplo 3.39

Considere la curva C de ecuación $y^2 - x^2(1+x) = 0$. Sea $P = \left(1/6, \sqrt{7}/\sqrt{216}\right)$. Observe que $P \in C$. Calcule un vector *perpendicular* a la curva en P.

Solución: Podemos ver C como una curva de nivel de $z=y^2-x^2(1+x)$, concretamente la curva de nivel z=0. De acuerdo a la teoría, el vector $\nabla z(P)$ es perpendicular a la curva de nivel C en P. Veamos

$$\nabla z(x,y) = (-x^2 - 2x(x+1), 2y)$$
$$\nabla z(P) = (-5/12, \sqrt{7}/\sqrt{54})$$

En la figura 3.17 se muestra gráficamente la situación.

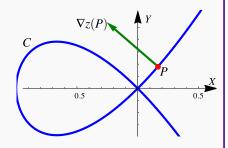


Figura 3.17: Vector normal en *P*

3.18 Plano tangente y el vector normal.

En la sección 3.8 se estableció que si f es diferenciable, entonces el plano tangente a z = f(x,y) en $P = (x_0, y_0, z(x_0, y_0))$ tiene ecuación

$$\frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0) = z - z_0$$

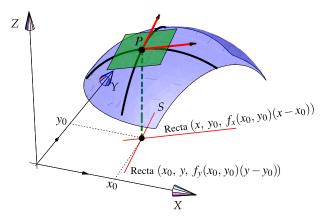


Figura 3.18: Plano tangente a z = f(x,y) en P si f es diferenciable.

Caso general. Podemos obtener la ecuación cartesiana del plano tangente (si existe) usando un vector normal a la superficie S: G(x,y,z)=0. Si G es derivable con continuidad en $P=(x_0,y_0,z_0)\in S$ y si el gradiente en P es no nulo, los vectores tangentes a cada curva en S que pasan por P están en el *plano tangente* a esta superficie en P y $\nabla G(x_0,y_0,z_0)$ es un vector normal a este plano.

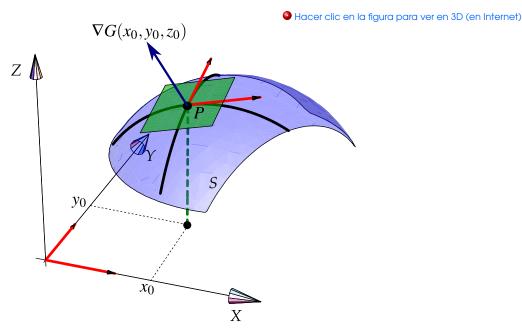


Figura 3.19: $\nabla G(P)$ es perpendicular al plano tangente a S en P.

Así, una ecuación del plano tangente en P es

$$ax + by + cz = d$$

con
$$(a,b,c) = \nabla G(x_0,y_0,z_0)$$
 y $d = \nabla G(x_0,y_0,z_0) \cdot P$.

(Plano Tengente)

• Si S tiene ecuación z = f(x,y) con f diferenciable, el plano tangente en $P \in S$ tiene ecuación cartesiana

$$\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) = z - z_0$$

• Si la superficie S tiene ecuación G(x,y,z)=0 con G diferenciable, el plano tangente en $P \in S$ tiene ecuación cartesiana

$$G_x(P) x + G_y(P) y + G_z(P) z = \nabla G(P) \cdot P$$

Ejemplo 3.40

Sea S la superficie de ecuación $f(x,y) = \frac{xy}{x^2 + y^2}$, si $(x,y) \neq (0,0)$ y f(0,0) = 0. Aunque $f_x(0,0) = f_y(0,0) = 0$, no hay plano tangente pues la función es discontinua en este punto (aunque esté definida).

Ejemplo 3.41

Sea S la superficie de ecuación $z = x^2 + 2y^2$. Obtener una ecuación cartesiana del plano tangente a S en P = (1,1,3).

Solución:

Primera manera. En este caso $f_x(x,y)=2x$ y $f_y(x,y)=4y$. Entonces una ecuación cartesiana sería,

$$\frac{\partial f}{\partial x}(1,1)(x-1) + \frac{\partial f}{\partial y}(1,1)(y-1) = z - 3,$$

es decir,

$$2(x-1) + 4(y-1) = z-3$$
,

Ejemplo 3.41 (continuación).

Otra manera. Sea $S: G(x,y,z) = z - x^2 - 2y^2 = 0$. Entonces un vector normal al plano tangente es $\nabla G = (-2x, -4y, 1)$. Ahora, $\nabla G(1,1,3) = (-2, -4, 1)$, entonces una ecuación del plano tangente es

$$-2x-4y+1z = \nabla G(1,1,3) \cdot P$$

= -3

Ejemplo 3.42

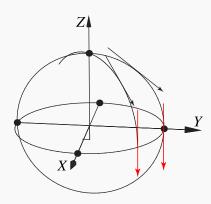
Consideremos la superficie S de ecuación $x^2 + y^2 + z^2 = 1$. Sea $P = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) \in S$. Calculemos la ecuación cartesiana del plano tangente en P.

- La ecuación de *S* es $G(x,y,z) = x^2 + y^2 + z^2 1 = 0$.
- $\nabla G(x,y,z) = (2x,2y,2z)$.
- $N = \nabla G(P) = (2/\sqrt{3}, 2/\sqrt{3}, 2/\sqrt{3}) \text{ y } d = P \cdot \nabla G(P) = 2$
- Una ecuación cartesiana del plano tangente: $\frac{2}{\sqrt{3}}x + \frac{2}{\sqrt{3}}y + \frac{2}{\sqrt{3}}z = 2$ o también $x + y + z = \sqrt{3}$.

Ejemplo 3.43

Consideremos la superficie S de ecuación $x^2 + y^2 + z^2 = 1$. Sea $P = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) \in S$.

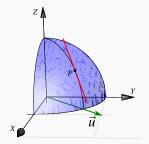
El gradiente de z es $\nabla z(x,y)=\left(-\frac{x}{z},-\frac{x}{z}\right)$. Como se ve, no está definido si z=0. Aquí las tangentes son rectas verticales.



Ejemplo 3.43 (continuación).

• La pendiente de la recta tangente en P en la dirección de $\overrightarrow{u} = (1,1)$ es

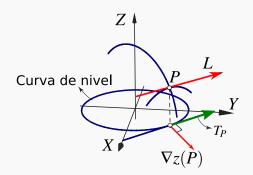
$$D_{(1,1)}z(P) = \nabla z(1/\sqrt{3}, 1/\sqrt{3}) \cdot \frac{(1,1)}{\sqrt{2}} = -\sqrt{2}$$



• El gradiente $\nabla z(1/\sqrt{3},1/\sqrt{3})$ es perpendicular a la recta tangente a la curva de nivel $z=\frac{1}{\sqrt{3}}$ en P. La derivada direccional en la dirección del vector unitario tangente es cero. Geométricamente, la recta L, en la figura que sigue, tiene pendiente cero.

Esto es así pues si $\overrightarrow{T_P}$ es el vector unitario tangente a la curva de nivel $z=\frac{1}{\sqrt{3}}$ en $(1/\sqrt{3},1/\sqrt{3})$, entonces

$$D_{\overrightarrow{T_P}}f(P) = \nabla f(P) \cdot \overrightarrow{T_P} = 0$$
 (¿porqué?)
$$= ||\nabla f(P)|| \cos \theta = 0$$



lo cual implica que $\theta = \pi/2$.

Ejemplo 3.44

Consideremos la superficie S de ecuación $x^2 + y^2 + z^2 = 1$. Encuentre los puntos $Q = (a,b,c) \in S$ tal que el plano tangente en Q sea paralelo al plano 2x - y + 3z = 1.

Solución: *Q* tiene tres incógnitas así que necesitamos, en principio, tres ecuaciones.

- Como $Q \in S$, esto nos da una ecuación: $a^2 + b^2 + c^2 = 1$.
- Como el plano tangente en Q es paralelo al plano 2x y + 3z = 1, sus vectores normales deben ser paralelos, es decir

$$\nabla G(Q) = \lambda (2, -1, 3)$$

esto nos da tres ecuaciones adicionales y una incógnita más, λ .

Ejemplo 3.44 (continuación).

• Para encontrar Q solo debemos resolver el sistema

$$\begin{cases} a^2 + b^2 + c^2 = 1 \\ \nabla G(Q) = \lambda(2, -1, 3) \end{cases}$$

es decir,

$$\begin{cases} a^{2} + b^{2} + c^{2} = 1 \\ (2a, 2b, 2c) = \lambda (2, -1, 3) \end{cases} \implies \begin{cases} a^{2} + b^{2} + c^{2} = 1 \\ 2a = 2\lambda \\ 2b = -\lambda \\ 2c = 3\lambda \end{cases}$$

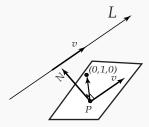
Resolviendo, obtenemos las dos soluciones

$$Q = \left(-\frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}, -\frac{3}{\sqrt{11}}\right), \text{ y } Q = \left(\frac{1}{\sqrt{11}}, -\frac{1}{\sqrt{11}}, \frac{3}{\sqrt{11}}\right)$$

Ejemplo 3.45

Determine el punto P=(x,y,z) de la superficie S, de ecuación $x^2-y^2+6z=0$, de modo que el plano tangente a la superficie en P contiene al punto Q=(0,1,0) y es paralelo a la recta L de ecuación (0,0,1)+t(2,1,0), $t\in\mathbb{R}$.

Solución: Un vector normal al plano tangente debe ser perpendicular al vector dirección de la recta L y al vector (0,1,0)-P), es decir es perpendicular al producto cruz de estos dos últimos vectores.



La recta L va en la dirección $\overrightarrow{v}=(2,1,0)$. Tenemos dos vectores normales al plano tangente a S en P=(x,y,z), $\nabla G(P)=(2x,-2y,6)$ y $N=((0,1,0)-P)\times(2,1,0)=(z,-2z,-2-x+2y)$.

Ejemplo 3.45 (continuación).

Entonces tenemos el sistema

$$\begin{cases} x^2 - y^2 + 6z &= 0 \\ (2x, -2y, 6) &= \lambda (z, -2z, -2 - x + 2y) \end{cases} \implies \begin{cases} x^2 - y^2 + 6z &= 0 \\ 2x &= \lambda z \\ -2y &= -2\lambda z \end{cases}$$
(2)
$$6 = \lambda (-2 - x + 2y)$$
(4)

De (2) y (3) tenemos y = 2x y usando (1) tenemos $z = \frac{x^2}{2}$. Ahora sustituimos estos resultados en (2),

$$2x = \lambda z \implies 2x + \frac{\lambda x^2}{2} = 0 \implies 2x \left(1 - \frac{\lambda x}{4}\right) = 0 \implies x = 0 \text{ o } \lambda x = 4$$

- si x = 0 entonces y = 0, z = 0 y $\lambda = -3$
- si $\lambda x = 4$ entonces de (4)

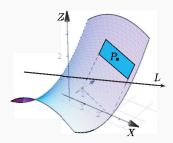
•
$$6 = \lambda(-2 - x + 2y) \implies 6 = -2\lambda - \lambda x + 4\lambda x \implies \lambda = 3$$

• como
$$\lambda x = 4 \implies x = \frac{4}{3}$$
 y entonces $y = \frac{8}{3}$ y $z = \frac{8}{9}$

Los puntos de la superficie buscados son P = (4/3,8/3,8/9) y P = (0,0,0). Las ecuación de cada plano tangente es

$$\frac{8x}{3} - \frac{16y}{3} + 6z = -\frac{16}{3} \quad y \quad 6z = 0.$$

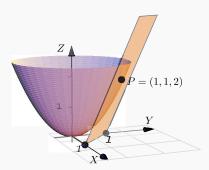
En la figura ?? se muestra el primer plano.

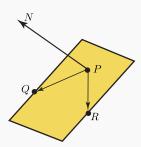


Ejemplo 3.45 (continuación).

Consideremos la superficie S de ecuación $z=x^2+y^2$. Encuentre los puntos $P=(a,b,c)\in S$ tal que el plano tangente en P contenga los puntos Q=(1,0,0) y R=(0,1,0).

Solución:





Un punto obvio es P = (0,0,0) pues el plano tangente en este punto, el plano XY, contiene a los puntos Q, R.

Busquemos otros puntos. El plano tangente en P = (x,y,z) debe contener los puntos P,Q y R por lo que un vector normal a este plano es $N = (Q - P) \times (R - P)$. Como sabemos, otro vector normal a este plano es $\nabla G(P)$. Así, tenemos el siguiente sistema

$$\left\{ \begin{array}{rcl} \nabla G(P) & = & \lambda \left(Q - P \right) \times \left(R - P \right) = \left(z, z, 1 - x - y \right) \\ z & = & x^2 + y^2 \end{array} \right. \implies \left\{ \begin{array}{rcl} 2x & = & \lambda z & (1) \\ 2y & = & \lambda z & (2) \\ -1 & = & \lambda \left(1 - x - y \right) & (3) \\ z & = & x^2 + y^2 & (4) \end{array} \right.$$

De (1) y (2) tenemos x = y y el sistema se re-escribe como

$$\begin{cases} 2x = \lambda z & (5) \\ \lambda - 2\lambda x = -1 & (6) \\ z = 2x^2 & (7) \end{cases}$$

De (5) y (7) tenemos $2x - 2\lambda x^2 = 0 \implies (2x(1 - \lambda x) = 0 \implies x = 0 \text{ o } \lambda x = 1.$

- Si x = 0 tenemos el punto P = (0,0,0).
- Si $\lambda x = 1$, sustituimos en la ecuación (6) y obtenemos $\lambda = 1$ por lo que, usando nuevamente (6), x = 1. Así obtenemos la segunda solución: P = (1,1,2).

EJERCICIOS

- **3.38** Sea $f(x,y) = 4 x^2 y^2$ la ecuación de una superficie S.
 - a) Calcule $D_{\vec{u}}f(Q)$ si $\vec{u}=(-2,1)$ y Q=(1,1,2) es un punto en la superficie.
 - **b)** Determine el punto $P = (a,b,c) \in S$ para el cual la derivada direccional de f en P es $\sqrt{2}$ en dirección de $\vec{u} = (-2,1)$ y $\sqrt{5}$ en la dirección de $\vec{v} = (1,1)$.
 - c) Encuentre la ecuación cartesiana del plano tangente a S en el punto $R = (1, -1, 2) \in S$.
 - **d)** Determine un vector \vec{u} para el cual la derivada direccional en $R = (1, -1, 2) \in S$ es máxima y calcule su valor.

- **3.39** Sea $x^2 + xyz + z^3 = 1$ la ecuación de una superficie *S*.
 - **a)** Calcule $D_{\vec{u}}z(Q)$ si u = (-2,1) y $Q = (1,2,0) \in S$
 - **b)** Determine $b \in \mathbb{R} \{0\}$ tal que en $P = (1, b, 0) \in S$ y $D_{\vec{u}}z(P) = \sqrt{2}$.
 - c) Encuentre la ecuación cartesiana del plano tangente a S en el punto $R = (1, -1, 1) \in S$.
 - **d)** Determine un vector \vec{u} para el cual la derivada direccional en $R = (1, -1, 1) \in S$ es mínima y calcule su valor.
- **3.40** Considere la superficie S de ecuación $z^3 + xz + y = 1$. $P = (1,1,0) \in S$
 - a) Calcule $D_{\vec{u}}z(P)$ donde $\vec{u}=(1,-2)$
 - b) ¿Cuál es el máximo valor que podría alcanzar la derivada direccional en P y en cuál dirección \vec{v} se alcanza?
 - c) Calcule la ecuación cartesiana del plano tangente en el punto P
- **3.41** Considere la superficie S de ecuación $xyz^2 = 8z$. $P = (1,1,8) \in S$
 - a) Calcule $D_{\vec{\boldsymbol{u}}}z(\boldsymbol{P})$ donde $\vec{\boldsymbol{u}}=(-5,\sqrt{2})$
 - b) ¿Cuál es el máximo valor que podría alcanzar la derivada direccional en ${\pmb P}$ y en cuál dirección ${\vec {\pmb v}}$ se alcanza?
 - c) Calcule la ecuación cartesiana del plano tangente en el punto ${\it P}$
- **3.42** Calcule la ecuación vectorial de la recta normal a la superficie $S: x^2 + y^2 + z^2 = 1$ en el punto $P = (1/2, 1/2, 1/\sqrt{2})$

Versión más reciente (y actualizaciones) de este libro:

http://www.tec-digital.itcr.ac.cr/revistamatematica/Libros/http://dl.dropbox.com/u/57684129/revistamatematica/Libros/index.html

MÁXIMOS Y MÍNIMOS.

4.1 Introducción

En una variable, los puntos críticos de f son los puntos $x = \mathbf{p}$ en los que $f'(\mathbf{p}) = 0$ (o en los que f' se indefine). Muchas veces se puede clasificar este punto crítico con el signo de $f''(\mathbf{p})$. Esto se puede establecer usando polinomios de Taylor. Según el teorema de Taylor, en los alrededores de $x = \mathbf{p}$,

$$f(\pmb{p}+h) = f(\pmb{p}) + f'(\pmb{p})h + \frac{f''(\pmb{p})}{2}h^2 + \dots + \frac{f^{(n)}(\pmb{p})}{n!}h^n + \frac{f^{(n+1)}(\xi)h^{n+1}}{(n+1)!} \quad \text{con} \quad \xi \quad \text{entre} \quad \pmb{p} \quad y \quad h.$$

En particular, si x = p es un punto crítico de f,

$$f(\boldsymbol{p}+h) - f(\boldsymbol{p}) = \frac{f''(\xi)}{2}h^2$$
 con ξ entre \boldsymbol{p} y h .

Si f'' es continua $f''(p) \neq 0$, entonces hay un entorno alrededor de p donde f'' conserva el signo. Si h es sufientemente pequeño, p+h está en el entorno y f''(p), $f''(\xi)$ y por tanto f(p+h)-f(p), tienen todos el mismo signo; por esto el signo de f(p+h)-f(p) es el signo de f''(p) si h es suficientemente pequeño.

Por tanto si $f''(\mathbf{p}) > 0$ entonces $f(\mathbf{p} + h) > f(\mathbf{p})$ y en $x = \mathbf{p}$ f alcanza un mínimo local y si $f''(\mathbf{p}) < 0$ entonces $f(\mathbf{p} + h) < f(\mathbf{p})$ y en $x = \mathbf{p}$ f alcanza un máximo local.

Observe que le signo de $f''(\mathbf{p}) \neq 0$ decide la concavidad del polinomio de Taylor

$$T_2(x) = f(\mathbf{p}) + f'(\mathbf{p})(x-h) + \frac{1}{2}f''(\xi)(x-h)^2.$$

Y esta concavidad coincide con la naturaleza del punto crítico.

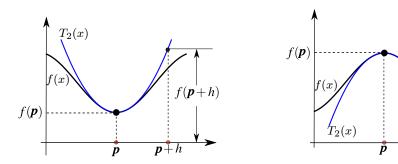


Figura 4.1: El signo de $f''(\mathbf{p})$ se usa para clasificar puntos críticos.

4.2 Máximos y mínimos locales en varias variables.

Como en cálculo en una variable, los extremos *locales* de una función de varias variables son puntos donde la función alcanza un máximo o un mínimo en un entorno del dominio de la función. Si la función está definida en una región D, los extremos *globales* son los puntos donde la función toma valores máximos o mínimos, en cualquier parte de la región en consideración. Recordemos que un entorno abierto alrededor de $p \in \mathbb{R}^n$ de radio δ es el conjunto $D_{\delta}(p) = \{x \in \mathbb{R}^n : ||x - p|| < \delta.\}$

Definición 4.1 (Extremos locales).

Sea f función de n variables, $f: \mathbb{R}^n \longrightarrow \mathbb{R}$.

f tiene un máximo local en $\mathbf{p} = (p_1, p_2, ..., p_n) \in \mathbb{R}^n$ si existe un entorno abierto $D_{\delta}(\mathbf{p})$ tal que $f(x_1, x_2, ..., x_n) \leq f(\mathbf{p})$ para todo $(x_1, x_2, ..., x_n) \in D_{\delta}(\mathbf{p})$. El punto $(p_1, p_2, ..., p_n, f(\mathbf{p}))$ se dice un máximo local de f y el número $f(\mathbf{p})$ es el máximo de f en el entorno $D_{\delta}(\mathbf{p})$.

f tiene un mínimo local en $\mathbf{p} = (p_1, p_2, ..., p_n) \in \mathbb{R}^n$ si existe un entorno abierto $D_{\delta}(\mathbf{p})$ tal que $f(x_1, x_2, ..., x_n) \ge f(\mathbf{p})$ para todo $(x_1, x_2, ..., x_n) \in D_{\delta}(\mathbf{p})$. El punto $(p_1, p_2, ..., p_n, f(\mathbf{p}))$ se dice un mínimo local de f y el número $f(\mathbf{p})$ es el mínimo de f en el entorno $D_{\delta}(\mathbf{p})$.

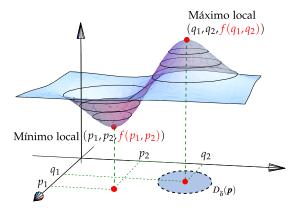


Figura 4.2: Máximo y mínimo local.

Si las desigualdades de la definición anterior se cumplen para todos los puntos en el dominio de f, entonces f tiene un máximo absoluto (o mínimo absoluto) en p.

4.3 Puntos críticos y extremos locales

Sea f continua. Un punto $\mathbf{p} \in \mathbb{R}^n$ es un punto crítico de f si $\mathbf{D}f(\mathbf{p}) = 0$ (o si $\mathbf{D}f$ no esta definida en este punto), es decir, si $\frac{\partial f}{\partial x_i} = 0$, i = 1, 2, ..., n. Un punto crítico que no es ni máximo ni mínimo local se llama punto de silla.

Como en cálculo en una variable, los extremos locales son puntos críticos, es decir, en el caso de que f sea diferenciable, la derivada de f se anula en los puntos críticos.

Teorema 4.1

Sea $U \subset \mathbb{R}^n$ un conjunto abierto y $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ diferenciable, si $\mathbf{p} \in \mathbb{R}^n$ es un extremo local de f entonces $\mathbf{D}f(\mathbf{p}) = 0$, es decir, \mathbf{p} es punto crítico de f.

• Hacer clic en la figura para ver en 3D (en Internet)

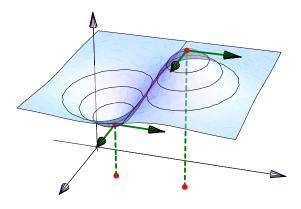


Figura 4.3: En los extremos locales las derivadas parciales se anulan

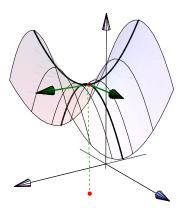


Figura 4.4: En los puntos de silla las derivadas parciales se anulan

4.4 Clasificación de puntos críticos

La fórmula de Taylor *de segundo orden* en n variables dice que si $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$, es diferenciable en $\mathbf{x} \in U$, entonces si $\mathbf{h} = (h_1, ..., h_n) \in \mathbb{R}^n$, existe $0 < \xi < 1$ tal que

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(\mathbf{x}) + R_1(\mathbf{x}, \mathbf{h}) \quad \text{con } R_1(\mathbf{x}, \mathbf{h}) = \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x} + \xi \mathbf{h}).$$

$$\text{Si definimos } D^2 f = \left(\begin{array}{ccc} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{array} \right), \text{ entonces } \sum_{i=1}^n \sum_{j=1}^n h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j} (\boldsymbol{x} + \boldsymbol{\xi} \boldsymbol{h}) = \boldsymbol{h} \cdot D^2 f(\boldsymbol{x} + \boldsymbol{\xi} \boldsymbol{h}) \cdot \boldsymbol{h}^T.$$

Así, la fórmula de Taylor de segundo orden se puede escribir como,

$$f(\boldsymbol{x}+\boldsymbol{h}) = f(\boldsymbol{x}) + \boldsymbol{D}f(\boldsymbol{x}) \cdot \boldsymbol{h}^T + \frac{1}{2}\boldsymbol{h} \cdot D^2 f(\boldsymbol{x} + \boldsymbol{\xi}\boldsymbol{h}) \cdot \boldsymbol{h}^T, \ 0 < \boldsymbol{\xi} < 1.$$

Cálculo en Varias Variables. Walter Mora F.

Derechos Reservados © 2013 Revista digital Matemática, Educación e Internet. www.tec-digital.itcr.ac.cr/revistamatematica/

La $\textit{Hesssiana}^4$ de f en \pmb{x} es la $\textit{forma cuadrática } \frac{1}{2} \pmb{h} \cdot D^2 f(\pmb{x}) \cdot \pmb{h}^T.$

Evaluando en un punto crítico p, Df(p) = 0 y la fórmula de Taylor de segundo orden queda

$$f(\boldsymbol{p}+\boldsymbol{h}) - f(\boldsymbol{p}) = \boldsymbol{h} \cdot D^2 f(\boldsymbol{x} + \xi \boldsymbol{h}) \cdot \boldsymbol{h}^T, \ 0 < \xi < 1.$$

El signo de la resta $f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p})$ es el signo de $\mathbf{h} \cdot D^2 f(\mathbf{x} + \xi \mathbf{h}) \cdot \mathbf{h}^T$. Si las derivadas $\frac{\partial^2 f}{\partial x_i \partial x_j}$ son continuas en un vecindario de \mathbf{p} , entonces $\mathbf{h} \cdot D^2 f(\mathbf{x}) \cdot \mathbf{h}^T$ conserva el signo en un entorno de este punto, así $\mathbf{h} \cdot D^2 f(\mathbf{x} + \xi \mathbf{h}) \cdot \mathbf{h}^T$ tiene el mismo signo que $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ si \mathbf{h} es suficientemente pequeño y por tanto, el signo de $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ (siempre y cuando no se anule) decide si en \mathbf{p} la función f alcanza un máximo o un mínimo local.

Pero $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ depende de \mathbf{h} . Para establecer si $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ es positiva o negativa para todos los valores de \mathbf{h} en un entorno, se usa la teoría de formas cuadráticas.

Matriz definida positiva y matriz definida negativa. Una forma cuadrática $g: \mathbb{R}^n \longrightarrow \mathbb{R}$, $g(\mathbf{h}) = \mathbf{h} \cdot A_{n \times n} \cdot \mathbf{h}^T$, es definida positiva si $g(\mathbf{h}) \geq 0$ para todo $\mathbf{h} \in \mathbb{R}^n$ y $g(\mathbf{h}) = 0$ solo si $\mathbf{h} = 0$. Similarmente, g es definida negativa si $g(\mathbf{h}) \leq 0$ para todo $\mathbf{h} \in \mathbb{R}^n$ y $g(\mathbf{h}) = 0$ solo si $\mathbf{h} = 0$.

Del álgebra lineal se sabe que si $A = (a_{ij})_{n \times n}$, $D_1 = a_{11}$, $D_2 = \text{Det}\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$,..., $D_n = \text{Det}\begin{pmatrix} a_{11} ... & ... a_{1n} \\ \vdots & \vdots \\ a_{n1} ... & ... a_{nn} \end{pmatrix}$, entonces

- $\mathbf{h} \cdot A_{n \times n} \cdot \mathbf{h}^T$ es definitiva positiva si $D_i > 0$ para i = 1, 2, ..., n
- \bullet $h \cdot A_{n \times n} \cdot h^T$ es definitiva negativa si $sgn(D_i) = (-1)^i$ para i = 1, 2, ..., n

Test de clasificación. En varias variables la clasificación de un punto crítico p se puede establecer si $h \cdot D^2 f(p) \cdot h^T$ es definida positiva o definida negativa. Esto se hace calculando D_1, D_2 , etc.

Teorema 4.2 (Condición suficiente).

Sea $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ de clase C^3 y $\mathbf{p} \in U$ un punto crítico de f. Si $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ es definida positiva, entonces \mathbf{p} es un mínimo relativo de f. Similarmente, si $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ es definida negativa, entonces \mathbf{p} es un máximo relativo de f.

En la demostración de este teorema se establece que si $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ es definida positiva entonces en la fórmula de Taylor obtenemos $f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p}) > 0$ en un entorno de \mathbf{p} , es decir $f(\mathbf{p})$ es un valor mínimo local. Similarmente, si $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ es definida negativa entonces en la fórmula de Taylor obtenemos $f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p}) < 0$ en un entorno de \mathbf{p} , es decir $f(\mathbf{p})$ es un valor máximo local. Si $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ no es ni definida positiva ni definida negativa, entonces tenemos un punto de silla.

⁴En honor a Ludwing Otto Hesse (1811 - 1874).

4.5 Clasificación de puntos críticos en el caso de dos variables.

De acuerdo a lo que hemos establecido en la sección anterior, en el caso de dos variables es sencillo determinar si $\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T$ es definida positiva o definida negativa. En este caso,

$$\mathbf{h} \cdot D^2 f(\mathbf{p}) \cdot \mathbf{h}^T = (h_1 \ h_2) \begin{pmatrix} f_{xx}(\mathbf{p}) & f_{xy}(\mathbf{p}) \\ f_{yx}(\mathbf{p}) & f_{yy}(\mathbf{p}) \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}.$$

Si f tiene derivadas parciales de segundo orden continuas, las derivadas mixtas son iguales y entonces $D_1 = f_{xx}(\mathbf{p})$ y $D_2 = f_{xx}(\mathbf{p}) \cdot f_{yy}(\mathbf{p}) - \left[f_{xy}(\mathbf{p})\right]^2$. En este caso a veces se usa $f_{xx}(\mathbf{p})$ en vez de D_1 y $D_2(\mathbf{p})$ en vez de D_2 .

Teorema 4.3 (Condición suficiente).

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de clase C^3 en un conjunto abierto U de \mathbb{R}^2 . Sea $D_2(x,y) = f_{xx}(x,y) \cdot f_{yy}(x,y) - \left[f_{xy}(x,y)\right]^2$. Si $(x_0,y_0) \in U$ es punto crítico de f, entonces

- a) si $D_2(x_0,y_0) > 0$ y $f_{xx}(x_0,y_0) > 0$, entonces f alcanza un mínimo local en (x_0,y_0) .
- **b)** si $D_2(x_0,y_0) > 0$ y $f_{xx}(x_0,y_0) < 0$, entonces f alcanza un máximo local en (x_0,y_0) .
- c) Si $D_2(x_0, y_0) < 0$, entonces $(x_0, y_0, f(x_0, y_0))$ es u punto de silla.

El teorema solo da condiciones suficientes: No nos dice algo si $D_2(x_0,y_0) = 0$. En este caso se podría usar otros métodos para clasificar. En es test, se puede usar f_{yy} en vez de f_{xx} pues si $D_2(x_0,y_0) > 0$, ambas tienen el mismo signo.

Ejemplo 4.1

Calcule y clasifique los puntos críticos de la función $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.

Solución: puntos críticos: $\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases} \implies \begin{cases} 4x^3 + 4y - 4x = 0 \\ 4y^3 - 4y + 4x = 0 \end{cases}$ (E2)

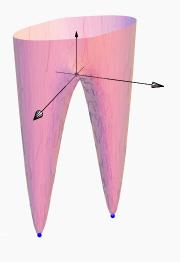
Sumando miembro a miembro obtenemos $x^3 + y^3 = 0 \implies x = -y$. Ahora sustituimos en la ecuación (E2), queda $4x^3 - 4x - 4x = 0 \implies x(x^2 - 2) = 0$; con lo cual obtenemos los puntos críticos (0,0), $(\sqrt{2}, -\sqrt{2})$, $(-\sqrt{2}, \sqrt{2})$.

Clasificación. $D_2(x,y) = (12x^2 - 4)(12y^2 - 4) - (4)^2$

Ejemplo 4.1 (continuación).

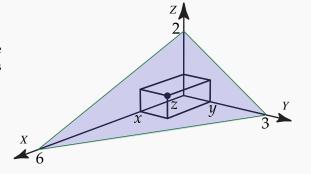
(x_0, y_0)	$D_1 = f_{xx}(x_0, y_0)$	$D_2 = D_2(x_0, y_0)$	Clasificación
(0,0)	-4	0	Criterio no decide.
$(\sqrt{2}, -\sqrt{2})$	20	384	$(\sqrt{2}, -\sqrt{2}, -8)$ es mínimo local.
$(-\sqrt{2},\sqrt{2})$	20	384	$(-\sqrt{2},\sqrt{2},-8)$ es mínimo local.

La representación gráfica de f se muestra en al figura. Aunque $D_2(0,0) = 0$ y el criterio no proporciona información, la gráfica a la derecha nos indica que se trata de un punto de silla.



Ejemplo 4.2

Calcule el volumen de la caja rectangular más grande que esté en el primer octante con tres de sus caras en los planos coordenados y un vértice en el plano x + 2y + 3z = 6.



Solución: Como z = (2 - x/3 - 2y/3), el volumen de la caja es V = xy(2 - x/3 - 2y/3).

Puntos críticos. Nos interesa solo x > 0 y y > 0. Entonces,

$$\begin{cases} V_x = 0 \\ V_y = 0 \end{cases} \implies \begin{cases} -\frac{2y}{3}(-3+x+y) = 0 \\ -\frac{x}{3}(-6+x+4y) = 0 \end{cases} \implies \begin{cases} -3+x+y = 0 \\ -6+x+4y = 0 \end{cases} \implies x = 2 \ y = 1.$$

Clasificación. $D_2 = D_2(x,y) = V_{xx}V_{yy} - V_{xy}^2 = -\frac{2y}{3} \cdot -\frac{4x}{3} - \left[\frac{2}{3}(x+2y-3)\right]^2$. Así $D_2(2,1) = 4/3 > 0$ y $D_1 = V_{xx}(2,1) = -2/3 < 0$. Esto nos dice que el volumen es máximo cuando las dimensiones de la caja son x = 2, y = 1 y $z = \frac{2}{3}$. Por otro lado, el volumen máximo es $\frac{4}{3}ul^3$.

Ejemplo 4.3

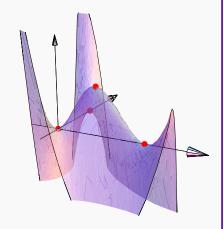
Sea $f(x,y) = 6xy - 2x^2y - 3xy^2$. Calcule y clasifique los puntos críticos de f.

Solución: Los puntos críticos se obtienen resolviendo el sistema $\nabla f = (0,0)$,

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases} \implies \begin{cases} 6y - 4xy - 3y^2 = 0 \\ 6x - 2x^2 - 6xy = 0 \end{cases} \implies \begin{cases} y(6 - 4x - 3y) = 0 \implies y = 0 \text{ o } y = \frac{6 - 4x}{3} \\ 6x - 2x^2 - 6xy = 0 \end{cases}$$

- Si y = 0, al sustituir en la ecuación (E2) obtenemos los puntos críticos (0,0), (3,0).
- Si $y = \frac{6-4x}{3}$, al sustituir en la ecuación (E2) obtenemos los puntos críticos (0,2), $\left(1,\frac{2}{3}\right)$.
- ullet Hacer clic en la figura para ver en 3D (en Internet) Clasificación. $D_2(x,y)=(-4y)(-6x)-[6-4x-6y]^2$

(x_0, y_0)	$D_1 = f_{xx}(x_0, y_0)$	$D_2 = D_2(x_0, y_0)$	Clasificación
(0,0)	0	-36	(0,0,0) es punto de silla
(3,0)	0	-36	(3,0,0) es punto de silla
(0,2)	-8	-36	(0,2,0) es punto de silla
(1,2/3)	-8/3	12	(1,2/3,4/3) es máximo local.

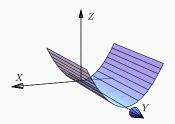


Ejemplo 4.4

Calcule y clasifique los puntos críticos de la función $f(x,y) = x^2$.

Solución: Primero calculamos los puntos críticos

$$\begin{cases} f_x = 2x = 0 \\ f_y = 0 = 0 \end{cases}$$



El sistema tiene infinitas soluciones de la forma (0,y). Así que tenemos un número infinito de puntos críticos. $D_2(x,y) = (2)(0) - (0)^2 = 0$ así que este criterio no da información aunque, de acuerdo a la gráfica , se trata de puntos donde f alcanza mínimos locales.

EJERCICIOS

- **4.1** Calcule y clasifique los puntos críticos de la función $f(x,y) = x^4 + y^4 4xy + 1$.
- **4.2** Determine y clasifique los puntos críticos de $f(x,y) = x^3 + 3xy^2 3x^2 3y^2 + 4$.
- **4.3** Sea $z = xy + \frac{a}{x} + \frac{b}{y}$ la ecuación de una superficie (con a y b constantes). Si P = (1,2) es un punto crítico de z, determine si en P la función alcanza un máximo relativo, un mínimo relativo o un punto de silla.
- **4.4** Calcular y clasificar los puntos críticos de $z = 4x^2 xy + y^2$.
- **4.5** Calcule y clasifique los puntos críticos de $z = (x^2 y^2)e^{-x^2 y^2}$.
- **4.6** Hallar el punto del paraboloide $z = x^2 + y^2 + 2$ más cercano del punto P = (2,2,2).
- **4.7** Cuales deben ser las dimensiones de un envase de forma rectangular, volumen de 512 cm³ y costo mínimo, si el material de los lados de la caja cuestan 10 colones el centímetro cuadrado y el material de la tapa y el fondo cuestan 20 colones el centímetro cuadrado.
- **4.8** Calcule el volumen de la caja de base rectángular más grande, que tenga caras en los planos x = 0, y = 0, z = 0, en el primer octante, y un vértice en el plano x + 2y + 3z = 6 (haga un dibujo).
- **4.9** Resuelva el ejercicio anterior si el plano tiene ecuación $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, con a, b, c números positivos.
- **4.10** Encuentre las dimensiones da la caja rectángular de máximo volumen, si el área de su superficie total debe ser de $64cm^2$

4.6 Extremos con restricciones: Multiplicadores de Lagrange

Supóngase que queremos hallar los máximos y los mínimos relativos de z=f(x,y) sujeto a la restricción g(x,y)=0. Esto significa que la función f(x,y) solo podrá ser evaluada en los puntos (x,y) que estén en la curva de nivel g(x,y)=0, es decir f(x,y) está restringida (o sujeta) a g(x,y)=0. Una manera de resolver este problema se puede obtener con un análisis geométrico de la situación (figura 4.5). En las cercanías de un máximo local, nos desplazamos sobre g en la dirección de crecimiento de f, hasta el punto más profundo que puede alcanzarse sobre g en esta dirección. Este punto podría ser el máximo local con restricciones que andamos buscando. Digamos que es P=(a,b,c). Para poder determinar este punto con una ecuación, podemos pensar que viajamos a "este punto más profundo" atravesando curvas de nivel, entonces la "última" curva de nivel debería ser una curva de nivel z=c tangente a z=c0 en z=c1 esta es un punto terminal de z=c2. Que estas curvas sean tangentes significa que sus gradientes son paralelos, es decir, z=c2 esta es la ecuación que usamos para determinar z=c2.

El análisis es similar para determinar un mínimo local con restricciones: En las cercanías de un mínim local, nos desplazamos sobre g en la dirección de decrecimiento hasta el punto más profundo que podamos alcanzar.

En resumen, para que (a,b,c) sea un extremo de f sujeto a la condición g(x,y)=0, es *necesario* que se cumpla $\nabla z(a,b)=\lambda\nabla g(a,b)$. La condición es necesaria pero no suficiente.

Esto nos dice que las soluciones del sistema $\nabla z(x,y) - \lambda \nabla g(x,y) = 0$ nos dan posibles extremos locales.

Los extremos de z = f(x,y) restringida a g(x,y) = 0 son los extremos de la función

$$L(x,y,\lambda) = f(x,y) - \frac{\lambda}{\lambda}g(x,y)$$

A λ se le llama multiplicador (de Lagrange). Observe que λ podría ser cero. Esto pasa por ejemplo cuando un extremo local con restricciones coincide con un extremo local (sin restricciones).

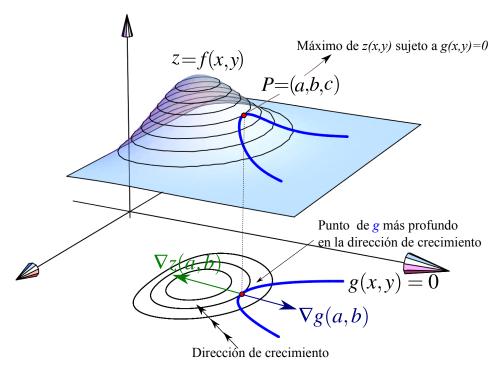


Figura 4.5: Un problema de optimización con restricciones.

Método de los multiplicadores de Lagrange con una restricción:

• Para minimizar o maximizar $f(x_1, x_2, ..., x_n)$ sujeta a la condición $g(x_1, x_2, ..., x_n) = 0$, minimice o maximice $L(x_1, y_1, ..., x_n, \lambda) = f(x_1, x_2, ..., x_n) - \lambda g(x_1, x_2, ..., x_n)$.

Para hallar los puntos críticos de $L(x_1, y_1, ..., x_n, \lambda)$ se debe resolver el sistema

$$\begin{cases} L_{x_1} & = & 0 \\ \vdots & \vdots & \vdots \\ L_{x_n} & = & 0 \\ g(x_1, x_2, ..., x_n) & = & 0 \end{cases}$$

 Criterio de clasificación. Para determinar si los puntos críticos son máximos, mínimos o no son ni máximos ni mínimos, se podría recurrir a al criterio de la Hessiana orlada (ver más adelante). Sin embargo, en los problemas que siguen, los puntos críticos se pueden clasificar de manera directa (usando la geometría del problema o una comparación).

Ejemplo 4.5

Minimizar $z = x^2 + y^2$ sujeto a x - y = 0.

Solución: Sea $L(x,y,\lambda) = x^2 + y^2 - \lambda(x-y)$.

$$\begin{cases}
L_x = 0 \\
L_y = 0 \\
L_\lambda = 0
\end{cases} \implies \begin{cases}
2x - \lambda = 0 \\
2y + \lambda = 0 \\
x - y = 0
\end{cases}$$
(E3)

Sustituyendo $x = \lambda/2$ y $y = -\lambda/2$ en (*E*3) obtenemos $\lambda = 0$ y, por tanto, x = 0, y = 0. En este caso, $\lambda = 0$ indica que el mínimo con restricciones coincide con un mínimo local de z.

Ejemplo 4.6

Determine tres números reales positivos x, y, z cuya suma sea 10 y su producto máximo.

Solución: Hay que maximizar el producto P = xyz sujeto a la restricción x + y + z = 10.

Sea $L(x,y,\lambda) = xyz - \lambda(x+y+z-10)$.

$$\begin{cases} L_{x} & = 0 \\ L_{y} & = 0 \\ L_{z} & = 0 \\ g(x,y,z) & = 0 \end{cases} \implies \begin{cases} yz - \lambda & = 0 \\ xz - \lambda & = 0 \\ xy - \lambda & = 0 \\ x + y + z - 10 & = 0 \end{cases}$$
(E4)

Despejando λ obtenemos yz = xz y xz = xy. Como x, y y z son, en este caso, positivos; podemos cancelar y entonces x = y = z. Sustituyendo en (E4) nos queda 3x - 10 = 0, es decir $x = y = z = \frac{10}{3}$.

Ejemplo 4.7

Encontrar el máximo y el mínimo de $f(x,y) = x^2 + y^2$ sujeto a $x^4 + y^4 = 1$

Solución:
$$F(x,y,\lambda) = x^2 + y^2 - \lambda(x^4 + y^4 - 1)$$

• Puntos críticos:

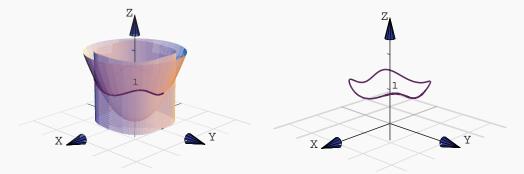
$$\begin{cases} F_x = 2x - \lambda 4x^3 & = 0 \\ F_y = 2y - \lambda 4y^3 & = 0 \\ F_\lambda = -x^4 - y^4 + 1 & = 0 \text{ (E3)} \end{cases} \implies \begin{cases} 2x(1 - 2\lambda x^2) & = 0 \\ 2y(1 - 2\lambda y^2) & = 0 \\ -x^4 - y^4 + 1 & = 0 \text{ (E3)} \end{cases}$$

Ejemplo 4.7 (continuación).

Casos para anular las tres ecuaciones:

- Caso x = 0 y y = 0. Al sustituir en (E3) obtenemos 1 = 0. No obtenemos puntos críticos.
- Caso x = 0 y $1 2\lambda y^2 = 0$. Al sustituir en (E3) obtenemos los puntos críticos $(0, \pm 1)$ y $\lambda = 1/2$.
- Caso y = 0 y $1 2\lambda x^2 = 0$. Al sustituir en (E3) obtenemos los puntos críticos $(\pm 1,0)$ y $\lambda = 1/2$.
- Caso $1 2\lambda y^2 = 0$ y $1 2\lambda x^2 = 0$. Elevando al cuadrado obtenemos $4\lambda^2 y^4 = 1$ y $4\lambda^2 x^4 = 1$. Multiplicando (E3) por $4\lambda^2$ a ambos lados y sustituyendo, obtenemos los cuatro puntos críticos $\left(\frac{\pm 1}{\sqrt[4]{2}}, \frac{\pm 1}{\sqrt[4]{2}}\right)$ y $\lambda^2 = 1/2$.

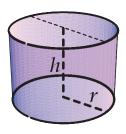
Para clasificar los puntos, dibujamos la curva de intersección entre la superficie $z = x^2 + y^2$ y la superficie generada por la curva $x^4 + y^4 = 1$.



así , tenemos cuatro puntos máximos relativos, $\left(\frac{\pm 1}{\sqrt[4]{2}}, \frac{\pm 1}{\sqrt[4]{2}}, \frac{2}{\sqrt{2}}\right)$ y cuatro puntos mínimos relativos, $(0,\pm 1,1)$, $(\pm 1,0,1)$

EJERCICIOS

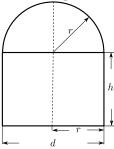
4.11 Se quiere construir un cilindro circular recto con fondo pero sin tapa (ver figura). Si se dispone de $48\pi cm^2$ de lata para construirlo; use multiplicadores de Lagrange para determinar las dimensiones del cilindro de tal manera que su volumen sea máximo.



4.12 Considere la superficie S de ecuación $xy^2z = 32$.

- a) Si $(x,y,z) \in S$ entonces $x \neq 0$, $y \neq 0$ y $z \neq 0$, ¿Porqué?
- **b)** Use multiplicadores de Lagrange para encontrar los puntos $\mathbf{Q} = (x, y, z) \in \mathbf{S}$ que están más cerca del origen O = (0,0,0).
- 4.13 Se desea construir un tanque para almacenar agua caliente en un cilindro con un tope esférico.

El tanque se debe diseñar de tal manera que puede almacenar 300m³ de líquido. Determinar la altura total y el diámetro del tanque de tal manera que la pérdida de calor en la superficie sea mínima



- **4.14** La densidad de una superficie metálica esférica de ecuación $x^2 + y^2 + z^2 = 4$ está dada por $\rho = 2 + xz + y^2$. Encuentre los puntos donde la densidad es mayor y menor.
- **4.15** Obtener el máximo de $f(x,y) = 9 x^2 y^2$ sujeta a x + y = 3
- **4.16** Sean k una constante positiva y $C(r,h) = 2kr^2 + 2.5(2krh)$ con r,h > 0. Minimizar C(r,h) sujeta a la restricción $kr^2h = 1000$.
- **4.17** Calcule los puntos críticos de $z = x^2y^2$ sujeta a la condición $x^2 + y^2 = 1$.

4.7 Criterio de clasificación para puntos críticos en 3 variables o más.

En problemas de extremos sin restricciones solo presentamos el criterio de clasificación para dos variables. Ahora vamos a presentar el caso general. Como antes, este criterio de clasificación no siempre funciona y se debe recurrir a otras técnicas.

Tambien presentamos un criterio de clasificación par el caso de problemas de optimización con restricciones.

4.7.1 Formas cuadráticas.

La forma cuadrática general, con n variables, es

$$F(x_1, x_2, ..., x_n) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2$$

$$+ 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + \dots + 2a_{1n}x_1x_n$$

$$+ 2a_{23}x_2x_3 + 2a_{24}x_2x_4 + \dots + 2a_{2n}x_2x_n$$

$$\vdots$$

$$+ 2a_{(n-1)n}x_{(n-1)}x_n$$

En particular, para dos y tres variables tendríamos:

$$F(x,y) = ax^2 + 2bxy + cy^2$$
 y $F(x,y,z) = ax^2 + by^2 + cz^2 + 2a_1xy + 2a_2xz + 2a_3yz$

Forma matricial

• Si ponemos $2a_{ij}x_1x_j = a_{ij}x_ix_j + a_{ji}x_jx_i$ con $a_{ij} = a_{ji}$, entonces $F(x_1, x_2, ..., x_n)$ se puede reescribir así

$$F(x_1, x_2, ..., x_n) = a_{11}x_1^2 + a_{12}x_1x_2 + \dots + a_{1n}x_1x_n$$

$$+ a_{21}x_2x_1 + a_{22}x_2^2 + \dots + a_{2n}x_2x_n$$

$$\vdots$$

$$+ a_{n1}x_nx_1 + a_{n2}x_nx_2 + \dots + a_{nn}x_n^2$$

Entonces, la forma $F(x_1, x_2, ..., x_n)$ se puede escribir matricialmente así:

$$F(x_1, x_2, ..., x_n) = (x_1, x_2, ..., x_n) A (x_1, x_2, ..., x_n)^T = XAX^T$$

donde $A = (a_{ij})_{n \times n}$. Observe que A es simétrica.

Ejemplo 4.8

Sea $F(x,y,z) = x^2 + 4xy + 2xz - 7y^2 - 6yz + 5z^2$, entonces

$$F(x,y,z) = (x,y,z) \begin{pmatrix} 1 & 2 & 1 \\ 2 & -7 & -3 \\ 1 & -3 & 5 \end{pmatrix} (x,y,z)^{T}$$

Formas definidas positivas y definidas negativas. El estudio algebraico de las formas cuadráticas esta centrado, en determinar si una forma tiene siempre el mismo signo, i.e., si la forma es positiva o negativa

Definición 4.2

 $F(x_1, x_2, \dots, x_n)$ se dice *definida positiva* si $F(x_1, x_2, \dots, x_n) > 0$, $\forall x_1, x_2, \dots, x_n$, no todos iguales a cero.

 $F(x_1, x_2, \dots, x_n)$ se dice definida negativa si $F(x_1, x_2, \dots, x_n) < 0$, $\forall x_1, x_2, \dots, x_n$, no todos iguales a cero.

Teorema 4.4

 $F(x,y) = ax^2 + 2bxy + cy^2 > 0$, $\forall x,y$, no todos iguales a cero, si y sólo si

$$a > 0$$
 y $DET\begin{pmatrix} a & b \\ b & c \end{pmatrix} > 0$

 $F(x,y) = ax^2 + 2bxy + cy^2 < 0$, $\forall x,y$, no todos iguales a cero, si y sólo si

$$a < 0$$
 y $DET \begin{pmatrix} a & b \\ b & c \end{pmatrix} > 0$

Este teorema se puede probar completando cuadrados: $F(x,y) = a\left(x + \frac{b}{a}y\right)^2 + \frac{ac - b^2}{a}y^2$, así, F(x,y) > 0, $\forall x,y$ no todos iguales a cero, si y sólo si a > 0 y $\frac{ac - b^2}{a}y^2 > 0$, o sea, a > 0 y $ac - b^2 > 0$.

Generalización. Para establecer la generalización de este teorema a *n* variables, necesitamos las siguientes definiciones:

• Sea $D_n = |A|$ es decir:

$$D_n = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

• Sea D_i definido de la siguiente manera:

$$D_{i} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1i} \\ a_{21} & a_{22} & \cdots & a_{2i} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} \end{vmatrix}$$

Los D_i son los menores principales de D_n .

Teorema 4.5

 $F(x_1, x_2, \dots, x_n)$ es definida positiva si $D_1 > 0$, $D_2 > 0$, \dots , $D_n > 0$

 $F(x_1, x_2, \dots, x_n)$ es definida negativa si $D_i > 0$ para i par, y $D_i < 0$ para i impar.

Ejemplo 4.9

Sea $F(x,y,z) = 2x^2 - 4xy + 4xz + 6y^2 - 4yz + 8z^2$. F es definida positiva, pues

$$D_3 = \begin{vmatrix} 2 & -2 & 2 \\ -2 & 6 & -2 \\ 2 & -2 & 8 \end{vmatrix} = 48 > 0, \ D_2 = \begin{vmatrix} 2 & -2 \\ -2 & 6 \end{vmatrix} = 8 > 0, \ D_1 = 2 > 0$$

4.7.2 Formas cuadráticas con restricciones lineales.

Supongamos que $F(x_1, x_2, \dots, x_n)$ está restringida a que sus variables cumplan la relación lineal $\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$. 'Orlando' los determinantes \overline{D}_i :

• Sea \overline{D}_i , $i \ge 2$, definido de la siguiente manera:

$$\overline{D}_{i} = DET \begin{pmatrix} 0 & \alpha_{1} & \alpha_{2} & \cdots & \alpha_{i} \\ \alpha_{1} & a_{11} & a_{12} & \cdots & a_{1i} \end{pmatrix}$$

$$\alpha_{2} \quad a_{21} \quad a_{22} \quad \cdots \quad a_{2i}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\alpha_{i} \quad a_{n1} \quad a_{n2} \quad \cdots \quad a_{ii} \end{pmatrix}$$

$$\overline{D}_{n} = DET \begin{pmatrix} 0 & \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\ \alpha_{1} & a_{11} & a_{12} & \cdots & a_{1n} \end{pmatrix}$$

$$\alpha_{2} & a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & & \\ \alpha_{n} & a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

A $\overline{D_i}$ se le llama determinante orlado.

Teorema 4.6

 $F(x_1, x_2, \cdots, x_n)$, restringida a que sus variables cumplan la relación lineal $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = 0$, es definida positiva si $\overline{D}_2 < 0$, $\overline{D}_3 < 0$, \cdots , $\overline{D}_n < 0$

 $F(x_1, x_2, \dots, x_n)$, restringida a que sus variables cumplan la relación lineal $\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$, es definida negativa si $\overline{D}_i > 0$ para $i \ge 2$, par; y $\overline{D}_i < 0$ para i impar.

Ejemplo 4.10

La forma cuadrática $f(x,y,z) = x^2 - y^2 - 7z^2 + xy$, sujeta a la relación lineal x + y + 2z = 0, es definida negativa, pues

$$\overline{\mathbb{D}}_3 = \left| \begin{array}{cccc} 0 & 1 & 1 & 2 \\ 1 & 1 & \frac{1}{2} & 0 \\ 1 & \frac{1}{2} & -1 & 0 \\ 2 & 0 & 0 & -7 \end{array} \right| = -2 < 0, \ \ \overline{\mathbb{D}}_2 = \left| \begin{array}{cccc} 0 & 1 & 1 \\ 1 & 1 & \frac{1}{2} \\ 1 & \frac{1}{2} & -1 \end{array} \right| = 1 > 0.$$

EJERCICIOS

- **4.18** Verifique que $F(x,y) = 4xy 2x^2 3y^2$, es definida negativa.
- **4.19** Verifique que $F(x,y,z) = x^2 + y^2 + z^2 yz$, es definida positiva.
- **4.20** Verifique que la forma $F(x,y) = x^2 + y^2 + 3xy$, restringida a que sus variables cumplan la relación lineal 2x + y = 0, es definida negativa.
- **4.21** ¿Es $F(x,y) = x^2 + y^2 + 3xy$, definida negativa?
- **4.22** Verifique que la forma $F(x,y,z) = -x^2 y^2 z^2 + xy + yz + xz$, restringida a que sus variables cumplan la relación lineal x + y + z = 0, es definida negativa.

4.7.3 Clasificación de puntos críticos.

Recordemos la definición de extremos locales.

Definición 4.3

Un punto P se dice mínimo local de $f(x_1, x_2, ..., x_n)$ si existe un vecindario V_P alrededor de P en que se cumple que $f(P) \le f(Q)$, $\forall Q \in V_P$.

Un punto P se dice máximo local de $f(x_1, x_2, ..., x_n)$ si existe un vecindario V_P alrededor de P en que se cumple que $f(P) \ge f(Q)$, $\forall Q \in V_P$.

Un punto P se dice punto de ensilladura (o de silla) de $f(x_1, x_2, ..., x_n)$ si existe un vecindario V_P alrededor de P en que se cumple tanto $f(P) \le f(Q)$ como $f(P) \ge f(R)$, para distintos puntos Q, R de V_P .

Criterio para máximos y mínimos. El teorema de Taylor se puede generalizar a varias variables así:

Sea V un conjunto convexo abierto. Si f es continua y tiene derivadas parciales continuas de segundo orden, sobre V, entonces existe $t \in [0,1]$ tal que, para cualesquiera dos puntos P, $Q \in V$; Q = P + h

$$f(P+h) = f(P) + \nabla f(P) \cdot h + \frac{1}{2} h H[tQ + (1-t)P] h^{T}$$

donde $h = (h_1, h_2, ..., h_n)$

$$H \text{ es llamada } \textit{matriz Hessiana,} \ |H[R]| = DET \left(\begin{array}{cccc} f_{x_1x_1}(R) & f_{x_1x_2}(R) & \cdots & f_{x_1x_n}(R) \\ f_{x_2x_1}(R) & f_{x_2x_2}(R) & \cdots & f_{x_2x_n}(R) \\ \vdots & \vdots & & \vdots \\ f_{x_nx_1}(R) & f_{x_nx_2}(R) & \cdots & f_{x_nx_n}(R) \end{array} \right)$$

Del teorema de Taylor y de la teoría previa de formas cuadráticas, podemos obtener las siguientes condiciones suficientes para un máximo o un mínimo local.

Teorema 4.7

Sea $D_1(P)$, $D_2(P)$, ..., $D_n(P)$, n determinantes definidos como sigue:

$$D_{i}(P) = DET \begin{pmatrix} f_{x_{1}x_{1}}(P) & f_{x_{1}x_{2}}(P) & \cdots & f_{x_{1}x_{i}}(P) \\ f_{x_{2}x_{1}}(P) & f_{x_{2}x_{2}}(P) & \cdots & f_{x_{2}x_{i}}(P) \\ \vdots & \vdots & & \vdots \\ f_{x_{i}x_{1}}(P) & f_{x_{i}x_{2}}(P) & \cdots & f_{x_{i}x_{i}}(P) \end{pmatrix}$$

Entonces,

- f alcanza un un mínimo en P si $D_1(P) > 0$, $D_2(P) > 0$, ..., $D_n(P) > 0$
- f alcanza un un máximo en P si todos los determinantes pares son positivos y todos los determinantes impares son negativos, i. e., $D_i(P) > 0$ si i es par $D_i(P) < 0$ si i es impar
- Si ninguna de estas condiciones es satisfecha, entonces en *P* podría haber o no haber un extremo local.

Ejemplo 4.11

Encontrar los extremos de $f(x,y,z) = x^2 + 3y^2 + 4z^2 - 2xy - 2yz + 2xz$

Solución:

• Puntos críticos: Resolvemos el sistema $\begin{cases} f_x = x - y + z = 0 \\ f_y = -x + 3y - z = 0 \\ f_z = x - y + 4z = 0 \end{cases}$

así, el único punto crítico es P = (0,0,0).

• Test: Como tenemos una función de tres variables, calculamos $D_1(P)$, $D_2(P)$ y $D_3(P)$

$$D_{3}(P) = DET \begin{pmatrix} f_{xx}(P) & f_{xy}(P) & f_{xz}(P) \\ f_{yx}(P) & f_{yy}(P) & f_{yz}(P) \\ f_{zx}(P) & f_{zy}(P) & f_{zz}(P) \end{pmatrix} = DET \begin{pmatrix} 2 & -2 & 2 \\ -2 & 6 & -2 \\ 2 & -2 & 8 \end{pmatrix} = 48 > 0$$

$$D_2(P) = DET \begin{pmatrix} 2 & -2 \\ -2 & 6 \end{pmatrix} = 8 > 0, \ D_1(P) = f_x x(P) = 2 > 0$$

por lo tanto en P = (0,0,0) f alcanza un mínimo local.

Ejemplo 4.12

Calcule y clasifique los puntos críticos de $f(x,y,z) = x^2 - y^2 - zy$.

Solución:

• Puntos críticos: Resolvemos el sistema

$$\begin{cases} f_x = 2x = 0 \\ f_y = -2y - z = 0 \\ f_z = -y = 0 \end{cases}$$

así, el único punto crítico es P = (0,0,0).

Ejemplo 4.12 (continuación).

• Test: Como tenemos una función de tres variables, calculamos $D_1(P)$, $D_2(P)$ y $D_3(P)$

$$D_{3}(P) = DET \begin{pmatrix} f_{xx}(P) & f_{xy}(P) & f_{xz}(P) \\ f_{yx}(P) & f_{yy}(P) & f_{yz}(P) \\ f_{zx}(P) & f_{zy}(P) & f_{zz}(P) \end{pmatrix} = DET \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & -1 \\ 0 & -1 & 0 \end{pmatrix} = -2 < 0$$

$$D_2(P) = DET \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} = -4 < 0, \ D_1(P) = f_x x(P) = 2 > 0$$

4.7.4 Clasificación de puntos críticos para problemas con restricciones.

Consideremos el problema

"Optimizar la *función objetivo*: $f(x_1, x_2, ..., x_n)$ sujeta a la restricción: $g(x_1, x_2, ..., x_n) = c$ "

La función lagrangiana será:

$$L(x_1,...,x_n,\lambda_1) = f(x_1,...,x_n) - \lambda (c - g(x_1,...,x_n))$$

Así, los puntos críticos se obtienen resolviendo el sistema (condiciones de primer orden)

$$\begin{cases} L_{x_1} &= f_{x_1} - \lambda g_{x_1} = 0 \\ L_{x_2} &= f_{x_2} - \lambda g_{x_2} = 0 \\ \vdots &\vdots &\vdots \\ L_{x_n} &= f_{x_n} - \lambda g_{x_n} = 0 \\ L_{\lambda} &= g(x_1, x_2, ..., x_n) = 0 \end{cases}$$

El criterio que se usará para clasificar los puntos críticos difiere del criterio que se usa en el problema de optimización sin restricciones.

Teorema 4.8

Consideremos el hessiano orlado

$$\overline{D}_{n}(P) = \begin{vmatrix} 0 & g_{x_{1}}(P) & g_{x_{2}}(P) & \cdots & g_{x_{n}}(P) \\ g_{x_{1}}(P) & L_{x_{1}x_{1}}(P) & L_{x_{1}x_{2}}(P) & \cdots & f_{x_{1}x_{n}}(P) \end{vmatrix}$$

$$g_{x_{2}}(P) & L_{x_{2}x_{1}}(P) & L_{x_{2}x_{2}}(P) & \cdots & L_{x_{2}x_{n}}(P)$$

$$\vdots & \vdots & \vdots & \vdots \\ g_{x_{n}}(P) & L_{x_{n}x_{1}}(P) & L_{x_{n}x_{2}}(P) & \cdots & L_{x_{n}x_{n}}(P) \end{vmatrix}$$

y sus menores principales

$$\overline{D}_{i}(P) = \begin{vmatrix} 0 & g_{x_{1}}(P) & g_{x_{2}}(P) & \cdots & g_{x_{i}}(P) \\ g_{x_{1}}(P) & L_{x_{1}x_{1}}(P) & L_{x_{1}x_{2}}(P) & \cdots & L_{x_{1}x_{i}}(P) \end{vmatrix}$$

$$g_{x_{2}}(P) \quad L_{x_{2}x_{1}}(P) \quad L_{x_{2}x_{2}}(P) \quad \cdots \quad L_{x_{2}x_{i}}(P)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$g_{x_{i}}(P) \quad L_{x_{i}x_{1}}(P) \quad L_{x_{i}x_{2}}(P) \quad \cdots \quad L_{x_{i}x_{i}}(P)$$

Entonces, si P es un punto crítico de f sujeto a la restricción $g(x_1,...,x_n)=c$, se tiene

- En P f alcanza un mínimo local si $D_2(P) < 0$, $D_3(P) < 0$, ..., $D_n(P) < 0$
- En *P f* alcanza un máximo local si todos los determinantes pares son positivos y todos los determinantes impares son negativos, i. e.,

$$D_i(P) > 0$$
 si $i \ge 2$, es par

$$D_i(P) < 0$$
 si i es impar

En el anterior teorema, no aparece \overline{D}_1 . Este siempre es negativo.

Cuando aparece más de una restricción, se debe considerar un hessiano con más de una orla:

Si hay n variables y m restricciones (m < n) de la forma $g^i(x_1,...,x_n) = c_i$ entonces la lagrangiana será

$$L = f(x_1, ..., x_n) + \sum_{i=1}^{m} \lambda_i [c_i - g^i(x_1, ..., x_n)]$$

y el hessiano orlado será:

$$\begin{vmatrix} 0 & 0 & \cdots & 0 & g_1^1 & g_2^1 & \cdots & g_n^1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & g_1^m & g_2^m & \cdots & g_n^m \\ g_1^1 g_1^2 & \cdots & g_1^m & L_{x_1 x_1} & L_{x_1 x_2} & \cdots & L_{x_1 x_n} \\ & \vdots & \vdots & & \vdots \\ g_n^1 g_n^2 & \cdots & g_n^m & L_{x_n x_1} & L_{x_n x_2} & \cdots & L_{x_n x_n} \end{vmatrix}$$

Ejemplo 4.13

Hallar los extremos de $z = x^2 + y^2$ sujeto a la restricción x + 4y = 2.

Solución: La función lagrangiana es $x^2 + y^2 - \lambda(2 - x - 4y)$.

Puntos críticos:
$$\begin{cases} L_x = 2x - \lambda & = & 0 \\ L_y = 2y - 4\lambda & = & 0 \\ L_\lambda = 2 - x - 4y & = & 0 \end{cases} \Longrightarrow \lambda = \frac{4}{17}, \ x = \frac{2}{17}, \ y = \frac{8}{17}.$$

Así, el único punto crítico es: $P = (\frac{2}{17}, \frac{8}{17})$

Test: Usemos el teorema para clasificar los puntos críticos. En este caso, solo debemos calcular el hessiano orlado \overline{D}_2

$$\overline{D}_2(P) = \left| \begin{array}{ccc} 0 & 1 & 4 \\ 1 & 2 & 0 \\ 4 & 0 & 2 \end{array} \right| = -34 < 0$$

así que $(\frac{2}{17},\frac{8}{17},z(\frac{2}{17},\frac{8}{17}))$ es un mínimo local.

Maximizar f(x,y) = 2y - x sujeto a $y = \operatorname{sen} x$, $0 \le x \le 2\pi$

Solución: $F(x,y,\lambda) = 2y - x - \lambda(y - \sin x)$

Puntos críticos:

$$\begin{cases} F_x = -1 + \lambda \cos x &= 0 \\ F_y = 2 - \lambda &= 0 &\Longrightarrow \lambda = 2, \ \cos x = \frac{1}{2} \ \text{o sea}, \ x = \frac{\pi}{3}, \ x = \frac{5\pi}{3}. \\ F_\lambda = -y + \sin x &= 0 \end{cases}$$
Así los puntos críticos son: $P_1 = \left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right) \ y \ P_2 = \left(\frac{5\pi}{3}, -\frac{\sqrt{3}}{2}\right)$

Ejemplo 4.14 (continuación).

Test: Usemos el teorema para clasificar los puntos críticos. En este caso, solo debemos calcular el hessiano orlado \overline{D}_2

$$\overline{\mathbf{D}}_2 = \left(\begin{array}{ccc} 0 & -\cos x & 1 \\ -\cos x & 0 & 0 \\ 1 & 0 & 0 \end{array} \right)$$

así que $\overline{D}_2(P_1) = \overline{D}_2(P_2) = 0$ y, en este caso, el criterio no da información.

EJERCICIOS

En los siguentes ejercicios, la clasificación de los puntos críticos puede hacerse usando el criterio del Hessiano orlado o haciendo una curva (si se pudiera).

- Obtener el máximo de $f(x,y) = 9 x^2 y^2$ sujeta a x + y = 34.23
- Minimizar $C(r,h) = 2kr^2 + 2.5(2krh)$ sujeta a la restricción $Kr^2h = 1000$, K, r, h > 0. 4.24
- Calcule máximos y mínimos de $z = 4x^2 + 9y^2$ sujeta a la condición $x^2 + y^2 = 1$. 4.25
- Calcule máximos y mínimos de z = 4xy sujeta a la condición $\frac{x^2}{9} + \frac{y^2}{4} = 1$. 4.26
- Calcule máximos y mínimos de $z = x^2y^2$ sujeta a la condición $x^2 + y^2 = 1$. 4.27
- Calcule máximos y mínimos de $z = yx + y^2$ sujeta a la condición $\ln x \ln y = 1$, x > 0, y > 0. 4.28
- Calcule máximos y mínimos de w = zyx sujeta a la condición $x^2 + y^2/9 + z^2/4 1 = 0$. 4.29

4.8 Extremos globales. Condiciones de Kuhn-Tucker.

Haremos aquí, una pequeño acercamiento a la programación no lineal. Sea w una función posiblemente no lineal,

• Un problema de maximización en programación no lineal, tiene la siguiente forma:

"Maximizar $w = f(x_1, x_2, ... x_n)$ sujeto a $g_i(x_1, ..., x_n) \le c_i$, i = 1, 2, ..., m con $x_i \ge 0$, j = 1, 2, ..., n."

Un problema de minimización en programación no lineal, tiene la siguiente forma:

"Minimizar $w = f(x_1, x_2, ... x_n)$ sujeto a $g_i(x_1, ..., x_n) \ge c_i$, i = 1, 2, ..., m con $x_j \ge 0$, j = 1, 2, ..., n."

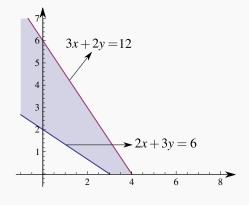
Solución gráfica. Para obtener una solución gráfica de un problema de programación no lineal (o lineal) sencillo, usamos las mismas ideas que se discutieron en la sección de multiplicadores de Lagrange. Las restricciones $g_i \le 0$ y las condiciones de no negatividad, determinan una región factible para encontrar una solución. Nos movemos luego, sobre esta región o hacia esta región, sobre las curvas de nivel de w, en la dirección en la que w crece o decrece, según sea el problema (maximización o minimización).

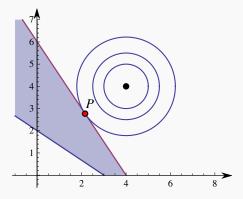
Una vez encontrada una solución, el problema de determinar si es un máximo (o mínimo) global depende de que se satisfagan ciertas condiciones.

Ejemplo 4.15

Minimizar $w = (x-4)^2 + (y-4)^2$, sujeto a las condiciones $2x + 3y \ge 6$, $y \quad 3x + 2y \le 12$, $x, y \ge 0$.

Solución: Aquí las restricciones son lineales. La región factible es la región sombreada en las figuras. La función w es un paraboloide con vértice en (4,4,0). La dirección de *decrecimiento* es hacia el vértice (entre más me acerco al centro, más pequeño se hace w). El punto P, donde w alcanza el mínimo local, se encontraría en el "punto más profundo" de la región factible en la dirección de *decrecimiento*.





Ejemplo 4.15 (continuación).

Para calcular este punto, observamos que la recta de contacto es 3x + 2y = 12. La curva de nivel de contacto es $(x-4)^2 + (y-4)^2 = k$. Así que tenemos que calcular los puntos P, sobre esta curva de nivel, donde la recta tangente es 3x + 2y = 12, o más precisamente, los puntos P = (a,b), sobre esta curva de nivel, donde la pendiente de la recta tangente es -3/2

La pendiente de la recta tangente a la curva de nivel $(x-4)^2 + (y-4)^2 = k$, en P es

$$y'(a,b) = -3/2 = -\frac{F_x(P)}{F_y(P)} = -\frac{a-4}{b-4}$$

y, puesto que P está también sobre la recta 3x + 2y = 12, entonces tendríamos que 3a + 2b = 12.

y, puesto que
$$P$$
 está también sobre la recta $3x + 2y = 12$, entonces tendríamos que Resolvemos entonces el sistema:
$$\begin{cases} -\frac{a-4}{b-4} &= -3/2 \\ 3a+2b &= 12 \end{cases} \implies a = \frac{28}{13}, \ b = \frac{36}{13}.$$

Condiciones de Kuhn-Tucker.

Consideremos el problema

"Maximizar $w = f(x_1, x_2, ...x_n)$ sujeto a $g_i(x_1, ..., x_n) \le c_i$, i = 1, 2, ..., m con $x_j \ge 0$, j = 1, 2, ..., n."

Entonces, consideremos la función lagrangiana

$$L = f(x_1,...x_n) + \sum_{i=1}^{m} y_i [c_i - g_i(x_1,...,x_n)]$$

Las y_i son los multiplicadores de Lagrange.

• Las condiciones de Kuhn-Tucker para un máximo son

$$L_{x_j} \le 0$$
, $x_j \ge 0$, $x_j L_{x_j} = 0$, $j = 1, 2, ...n$

$$L_{y_j} \ge 0$$
, $y_i \ge 0$, $y_i L_{y_i} = 0$, $i = 1, 2, ..., m$

• Las condiciones de Kuhn-Tucker para un mínimo son

$$L_{x_j} \ge 0$$
, $x_j \ge 0$, $x_j L_{x_j} = 0$, $j = 1, 2, ...n$

$$L_{y_i} \le 0$$
, $y_i \ge 0$, $y_i L_{y_i} = 0$, $i = 1, 2, ..., m$

Teorema 4.9 (Versión para restricciones lineales).

Dado el problema no lineal

"Maximizar (o Minimizar) $w = f(x_1, x_2, ... x_n)$ sujeto a $g_i(x_1, ..., x_n) \le c_i$, i = 1, 2, ..., m con $x_j \ge 0$, j = 1, 2, ..., n," si se satisfacen las siguientes condiciones:

- a.) las g_i son lineales (diferenciables y convexas) en el octante no negativo,
- b.) f es diferenciable y cóncava en el octante no negativo,
- c.) el punto P satisface las condiciones de Kuhn-Tucker

entonces en P, la función objetivo w alcanza un máximo (o mínimo) global.

Para verificar que un punto P satisface las condiciones de Kuhn-Tucker, se desarrollan estas condiciones, i.e., se calculan las derivadas parciales L_{x_j} y las L_{y_i} , luego las L_{x_j} se evalúan en P y se debe verificar que existen $y_1, y_2, ..., y_n$ tal que se satisface todo el conjunto de condiciones.

Ejemplo 4.16

Minimizar $w = (x-4)^2 + (y-4)^2$, sujeto a las condiciones $2x + 3y \ge 6$, $-3x - 2y \ge -12$, $x, y \ge 0$.

Solución: Ya sabemos que w podría alcanzar un a mínimo global en $P = (\frac{28}{13}, \frac{36}{13})$. Ahora verificamos si satisface las condiciones de Kuhn-Tucker, pues las condiciones a.) y b.) ya se cumplen.

Sea $L = (x-4)^2 + (y-4)^2 + y_1(6-2x-3y) + y_2(-12+3x+2y)$. Como es un problema de minimización, las condiciones son

1.
$$L_x = 2(x-4) - 2y_1 + 3y_2 \ge 0$$

2.
$$L_y = 2(y-4) - 3y_1 + 2y_2 \ge 0$$

3.
$$L_{y_1} = 6 - 2x - 3y \le 0$$

4.
$$L_{y_2} = -12 + 3x + 2y \le 0$$

5.
$$xL_x = 2x(x-4) - 2xy_1 + 3xy_2 = 0$$

6.
$$yL_y = 2y(y-4) - 3yy_1 + 2yy_2 = 0$$

7.
$$y_1L_{y_1} = 6y_1 - 2xy_1 - 3yy_1 = 0$$

8.
$$y_2L_{y_2} = -12y_2 + 3xy_2 + 2yy_2 = 0$$

Ejemplo 4.16 (continuación).

Las condiciones de no negatividad, que claramente se cumplen para el punto P. Ahora debemos evaluar estas ocho condiciones en nuestro punto P y verificar que existen y_1, y_2 tales que las condiciones se cumplen.

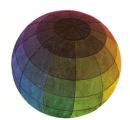
Al sustituir en las condiciones 5. y 6. obtenemos que $L_x(P) = 0$ y que $L_y(P) = 0$, de donde se obtiene

$$\begin{cases}
-2y_1 + 3y_2 &= 48/13 \\
-3y_1 + 2y_2 &= 32/13
\end{cases} \implies y_1 = 0, \ y_2 = \frac{16}{13},$$

que son no negativas como se pedía. Con estos valores de las y_i y P, se cumplen todas las condiciones de Kuhn-Tucker. Por tanto en P la función objetivo w alcanza un mínimo global.

EJERCICIOS Resuelva los siguientes ejercicios usando el método gráfico. Aplique, si se puede, las condiciones de Kuhn-Tucker.

- **4.30** Maximizar $w = x^2 + y^2$, sujeto a las condiciones $2x + 3y \ge 6$, $-3x 2y \ge -12$, $x, y \ge 0$.
- **4.31** Maximizar z = 3x + 2y, sujeta a las restricciones $-3x + 2y \le 6$ y $-4x + 9y \le 36$, $x, y \ge 0$
- **4.32** Maximizar z = 4x + 3y, sujeta a las restricciones $2x + 3y \le 18$ y $4x + 2y \le 10$, $x, y \ge 0$
- **4.33** Mínimizar $z = (x-1)^2 + (y-2)^2$, sujeta a las restricciones $-3x + 2y \le 6$ y $-4x + 9y \le 36$, $x, y \ge 0$
- **4.34** Mínimizar $z = 3x^2 + (y-1)^2$, sujeta a las restricciones $-3x y \le 6$ y $-4x + y \le 6$, $x, y \ge 0$
- **4.35** Mínimizar $z = -x^4$, sujeta a las restricciones $x \le 6$ y $x \ge -2$



Versión más reciente (y actualizaciones) de este libro:

http://www.tec-digital.itcr.ac.cr/revistamatematica/Libros/http://dl.dropbox.com/u/57684129/revistamatematica/Libros/index.html

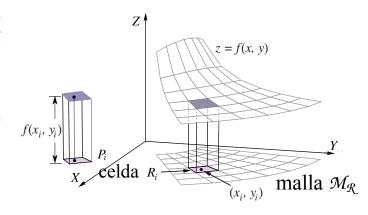
INTEGRAL DOBLE E INTEGRAL TRIPLE. CAMBIO DE VARIABLE.

5.1 Integral doble.

Sea R es una región acotada y cerrada del plano, de área A(R) y sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función definida y acotada sobre R. Supongamos que $\mathcal{M}_{\mathcal{R}} = \{R_1, R_2, ... R_n\}$ es un conjunto de n celdas que conforman una malla que cubre R (ver figura). El área de cada celda R_i la denotamos con ΔA_i .

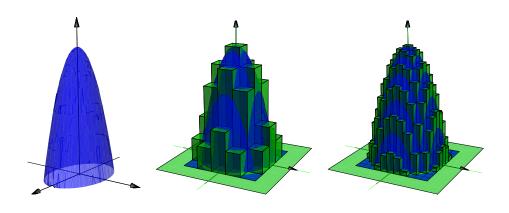
Una suma de Riemann de f sobre R es una expresión de la forma

$$\sum_{i=1}^{n} f(x_i, y_i) \Delta A_i$$



donde $(x_i, y_i) \in R_i$.

Si f es continua y positiva sobre R, entonces $f(x_i,y_i)\Delta A_i$ aproxima el volumen de cada prisma P_i de base R_i y altura $f(x_i,y_i)$; en este caso la suma de Riemann aproxima el volumen del sólido entre la región R y el gráfico de f.



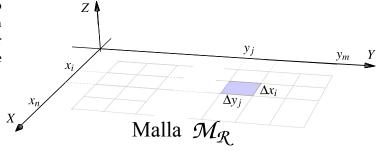
Diámetro de la malla. El diámetro de cada celda R_i es la máxima distancia entre todas las distancias entre cualesquiera dos puntos en R_i y se denota $||R_i||$. El diámetro de la malla $\mathcal{M}_{\mathcal{R}}$ es $||\mathcal{M}_{\mathcal{R}}|| = \sup_i \{||R_i||\}$ y $n := \mathcal{C}(\mathcal{M})$.

Definición 5.1 (Función integrable).

Si las sumas de Riemann de f sobre $\mathcal{M}_{\mathcal{R}}$ tienen un límite, independiente de la escogencia de los (x_i, y_i) , conforme $||\mathcal{M}_{\mathcal{R}}|| \to 0$, entonces decimos que f es *integrable* sobre R y que la integral es este límite. En este caso escribimos,

$$\iint_{R} f(x,y)dA = \lim_{||\mathcal{M}|| \to 0} \sum_{i=1}^{\mathcal{C}(\mathcal{M})} f(x_{i},y_{i}) \Delta A_{i}$$

En el caso de que R sea una región rectangular, la malla $\mathcal{M}_{\mathcal{R}}$ se puede tomar como un conjunto de rectángulos $R_{ij} = [x_i, x_{i+1}] \times [y_j, y_{j+1}]$ de área $\Delta A_{ij} = \Delta x_i \Delta y_j$. En este caso es natural reemplazar el elemento de área dA por dxdy y escribir el límite como,



$$\iint_{R} f(x,y) dxdy = \lim_{\|n,m\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{i}, y_{j}) \Delta x_{i} \Delta y_{j}$$

Las propiedades de las funciones integrables en dos variables son similares a las propiedades de las funiones integrables en una variable.

Teorema 5.1 (Propiedades de la funciones integrables).

- a.) Si f es continua sobre R, entonces f es integrable sobre R.
- b.) Sea $k \in \mathbb{R}$. Si f y g son integrables sobre R, entonces kf y $f \pm g$ son integrables sobre R y

$$\iint_{R} kf(x,y) dA = k \iint_{R} f(x,y) dA \quad \text{y} \quad \iint_{R} f(x,y) \pm g(x,y) dA = \iint_{R} f(x,y) dA \pm \iint_{R} g(x,y) dA$$

c.) Si f y g son integrables sobre regiones R y S que no se traslapan, entonces f es integrables sobre $R \cup S$ y

$$\iint_{R \cup S} f(x,y) dA = \iint_{R} f(x,y) dA + \iint_{S} f(x,y) dA$$

d.) Si f y g son integrables sobre R y $f(x,y) \le g(x,y)$ para todo $(x,y) \in R$, entonces

$$\iint_{R} f(x,y) dA \le \iint_{R} g(x,y) dA$$

e.) Si f es integrable sobre R y $M \le f(x,y) \le m$ para todo $(x,y) \in R$, entonces

$$MA(R) \le \iint_R f(x,y) dA \le mA(R)$$

Otros tipos de integración. El concepto de integral que hemos visto es el concepto de integral en el sentido de Riemann y es suficiente para los cálculos y las aplicaciones en este libro. Para otros propósitos esta integral no es adecuada y se requiere definir un tipo más general de integración, por ejemplo la integral en el sentido Lebesgue.

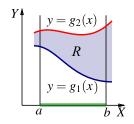
Una diferencia esencial entre una integral y otra es la manera en que se *mide* los conjuntos de puntos. La integral de Riemann usa medida de Jordan y la de Lebesgue, medida de Lebesgue.

5.2 Cálculo de integrales dobles. Integral iterada.

El teorema de Fubuni establece que si f es continua sobre R, la integral doble se puede evaluar por "integración parcial" respecto a cada variable, una a la vez. Este es el método de "integrales iteradas". Primero debemos especificar dos maneras de describir una misma región.

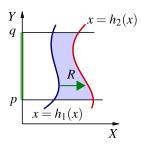
• Región entre las curvas $y = g_1(x)$ y $y = g_2(x)$.

 $R = \{(x,y) \in \mathbb{R}^2 \text{ tal que } a \le x \le b \text{ y } g_2(x) \le y \le g_1(x)\}$ con g_1 y g_2 funciones continuas en [a,b].



• Región entre las curvas $x = h_1(y)$ y $x = h_2(y)$.

 $R = \{(x,y) \in \mathbb{R}^2 \text{ tal que } p \le y \le q \text{ y } h_2(x) \le x \le h_1(x)\}$ con h_1 y h_2 funciones continuas en [p,q].



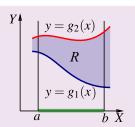
Teorema 5.2 (Fubini).

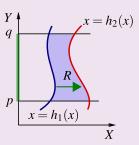
Sea $R = \{(x,y) \in \mathbb{R}^2 \text{ tal que } a \le x \le b \text{ y } g_2(x) \le y \le g_1(x)\}$ con g_1 y g_2 funciones continuas en [a,b]. Si f es continua en R, entonces

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy dx = \int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy \right] dx$$

Sea $R=\{(x,y)\in\mathbb{R}^2\ \text{tal que}\ p\leq y\leq q\ y\ h_1(x)\leq x\leq h_2(x)\}$ con h_1 y h_2 funciones continuas en [p,q]. Si f es continua en R, entonces

$$\iint_{R} f(x,y) dA = \int_{p}^{q} \int_{h_{1}(x)}^{h_{2}(x)} f(x,y) dx dy = \int_{p}^{q} \left[\int_{h_{1}(x)}^{h_{2}(x)} f(x,y) dx \right] dy$$





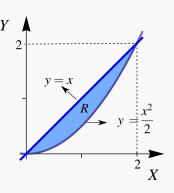
Ejemplo 5.1

Sea R la región de la figura. Vamos a calcular $\iint_R xy\,dA$ usando el orden de integración " $dy\,dx$ " y el orden de integración " $dx\,dy$."

Observe que R se puede describir como

$$R: 0 \le x \le 2, \ \frac{x^2}{2} \le y \le x$$

$$R: 0 \le y \le 2, \ y \le x \le \sqrt{2y}.$$

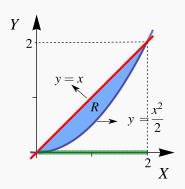


 \bullet Integrando en le orden "dy dx"

$$\iint_{R} xy dA = \int_{0}^{2} \left[\int_{\frac{x^{2}}{2}}^{x} xy dy \right] dx$$

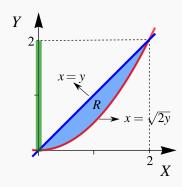
$$= \int_{0}^{2} \left[x \frac{y^{2}}{2} \Big|_{\frac{x^{2}}{2}}^{x} \right] dx$$

$$= \int_{0}^{2} \left[x \frac{x^{2}}{2} - x \frac{x^{4}}{8} \right] dx = \frac{2}{3}$$



● Integrando en le orden "dx dy"

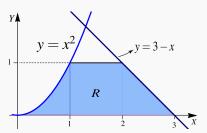
$$\iint_{R} xy \, dA = \int_{0}^{2} \left[\int_{y}^{\sqrt{2y}} xy \, dx \right] \frac{dy}{dy}$$
$$= \int_{0}^{2} \frac{x^{2}}{2} y \Big|_{y}^{\sqrt{2y}} dy$$
$$= \int_{0}^{2} \left[\frac{2y}{2} y - \frac{y^{2}}{2} y \right] dy = \frac{2}{3}$$



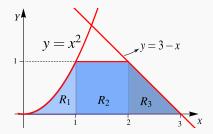
Ejemplo 5.2

En este ejemplo se muestra como el número de regiones de integración puede variar, de acuerdo a la elección del orden de integración.

Considere la integral $I = \iint_R x^2 + y^2 dA$, donde R es la región de la figura. Vamos a calcular esta integral doble, usando el orden de integración "dy dx" y el orden de integración "dx dy."



• Orden "dydx": en este caso $R = R_1 \cup R_2 \cup R_3$. La manera de ver la región es como sigue,



$$\iint_{R} x^{2} + y^{2} dA = \int_{0}^{1} \left[\int_{0}^{x^{2}} x^{2} + y^{2} dy \right] dx + \int_{1}^{2} \left[\int_{0}^{1} x^{2} + y^{2} dy \right] dx + \int_{2}^{3} \left[\int_{0}^{3-x} x^{2} + y^{2} dy \right] dx$$

$$= \int_{0}^{1} x^{2} y + \frac{y^{3}}{3} \Big|_{0}^{x^{2}} dx + \int_{1}^{2} x^{2} y + \frac{y^{3}}{3} \Big|_{0}^{1} dx + \int_{2}^{3} x^{2} y + \frac{y^{3}}{3} \Big|_{0}^{3-x} dx$$

$$= \int_{0}^{1} x^{4} + \frac{x^{6}}{3} dx + \int_{1}^{2} \frac{1}{3} + x^{2} dx + \int_{2}^{3} 9 - 9x + 6x^{2} - \frac{4x^{3}}{3} dx = \frac{1207}{210}$$

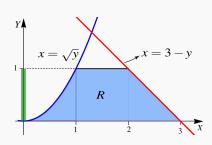
● Orden "dx dy"

$$I = \int_0^1 \left[\int_{\sqrt{y}}^{3-y} x^2 + y^2 dx \right] dy$$

$$= \int_0^1 \left[x^2 y + \frac{y^3}{3} \Big|_{\sqrt{y}}^{3-y} \right] dy$$

$$= \int_0^1 9 - 9y - \frac{y^{\frac{3}{2}}}{3} + 6y^2 - y^{\frac{5}{2}} - \frac{4y^3}{3} dy$$

$$= \frac{1207}{210}$$

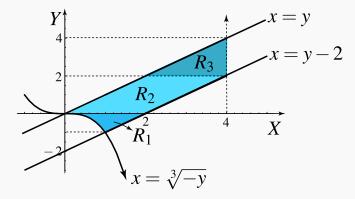


Ejemplo 5.3

Considere la integral $I = \int_0^1 \int_{-x^3}^x f(x,y) \, dy \, dx + \int_1^4 \int_{x-2}^x f(x,y) \, dy \, dx$. Dibuje la región de integración y re-escriba la integral en el orden " $dx \, dy$."

Solución: La región de integración en la primera integral es $0 \le x \le 1$ y $x \le y \le -x^3$. La región de integración en la segunda integral es $1 \le x \le 4$ y $x \le y \le x - 2$.

En la figura aparece la región de integración. Si y es la variable independiente, $R = R_1 \cup R_2 \cup R_3$.



● Orden "dx dy"

$$\iint_{R} f(x,y) dA = \iint_{R_{1}} f(x,y) dA + \iint_{R_{2}} f(x,y) dA + \iint_{R_{3}} f(x,y) dA$$

$$= \int_{2}^{4} \int_{y}^{4} f(x,y) dx dy + \int_{0}^{2} \int_{y}^{y-2} f(x,y) dx dy + \int_{-1}^{0} \int_{-\sqrt[3]{y}}^{y-2} f(x,y) dx dy$$

Ejemplo 5.4

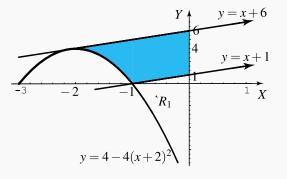
Sea
$$I = \int_{-2}^{-1} \int_{4-4(x+2)^2}^{x+6} dy dx + \int_{-1}^{0} \int_{x+1}^{x+6} dy dx$$
.

- a.) Dibuje la región de integración.
- b.) Plantear la integral o las integrales que corresponden a *I* invirtiendo el orden de integración.

Solución: La región es

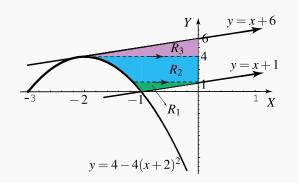
Ejemplo 5.4 (continuación).

$$R: \left\{ \begin{array}{ccc} 4 - 4(x+2)^2 \le y \le x + 6 & \text{ si } & -2 \le x \le -1 \\ \\ x + 1 \le y \le x + 6 & \text{ si } & -1 \le x \le 0 \end{array} \right.$$



Para integrar en el orden "dx dy" hay que partir la región en tres subregiones R_1 , R_2 , R_3 .

$$\begin{cases}
-2 + \frac{\sqrt{4-y}}{2} \le x \le y - 1 & \text{si} \quad 0 \le y \le 1 \\
-2 + \frac{\sqrt{4-y}}{2} \le x \le 0 & \text{si} \quad 1 \le y \le 4 \\
y - 6 \le x \le 0 & \text{si} \quad 4 \le y \le 6
\end{cases}$$



Luego,

$$I = \int_0^1 \int_{-2 + \frac{\sqrt{4 - y}}{2}}^{y - 1} dx dy + \int_1^4 \int_{-2 + \frac{\sqrt{4 - y}}{2}}^0 dx dy + \int_4^6 \int_{y - 6}^0 dx dy$$

5.3 Área y Volumen

• De acuerdo con nuestra definición de integral doble, El área A_R de una región R se puede calcular con la integral doble ("área de la base \times altura")

$$A_R = \iint_R 1 \, dx \, dy = \iint_R 1 \, dy \, dx$$

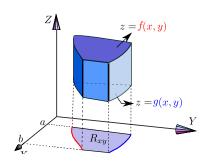
• Sea $f(x,y) \ge 0$ y continua en una región cerrada R. Sea V_Q el volumen del sólido Q que tiene a R como base y una altura de medida f(x,y) en cada $(x,y) \in R$, entonces

$$V_Q = \iint_R f(x, y) \, dA$$

• Si el sólido Q está limitado, sobre la región R, por dos superficies de ecuaciones z = f(x,y) y z = g(x,y) con $f(x,y) - g(x,y) \ge 0$ sobre R, entonces

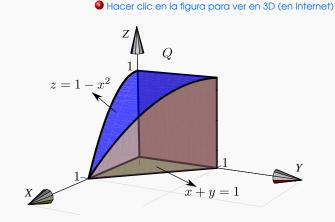
$$V_{Q} = \iint_{R} f(x,y) - g(x,y) dA$$

• Muchas veces es conveniente considerar como la región *R* la proyección del sólido sobre los planos *XZ* o *YZ*.



Ejemplo 5.5

Sea Q el sólido limitado por las superficies $z=1-x^2$, y x+y=1 en el primer octante. Calcule V_Q usando como región R cada una de las proyecciones del sólido sobre los planos XY,YZ,XZ.

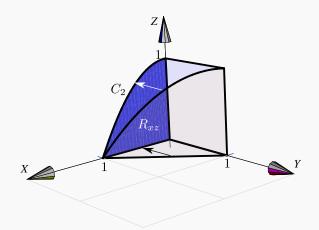


Solución:

• Cálculo de V_Q proyectando sobre el plano XZ. La proyección sobre el plano XZ se muestra en la figura. La región está entre la curva C_2 : $z=1-x^2$ y el eje X.

Desde el punto de vista del plano XZ, el sólido esta limitado por las superficies x=0 y y=1-x. Integrando en el orden "dz dx" queda

$$V_Q = \int_0^1 \int_0^{1-x^2} 1 - x - 0 \, dz \, dx$$
$$= \int_0^1 z - zx |_0^{1-x^2} \, dx$$
$$= \int_0^1 (1-x)(1-x^2) \, dx = \frac{5}{12}$$



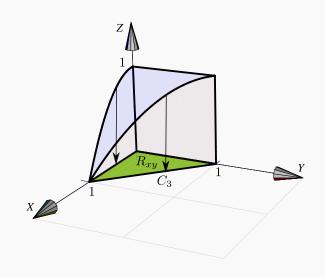
Ejemplo 5.5 (continuación).

ullet Cálculo de V_Q proyectando sobre el plano XY. La proyección sobre el plano xy se muestra en la figura

La ecuación de la curva C_3 corresponde a y = 1 - x con $x \in [0,1]$. Desde el punto de vista del plano XY, el sólido Q esta entre las superficies $z = 1 - x^2$ y z = 0.

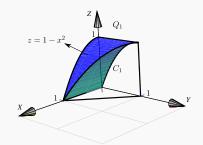
Integrando en el orden "dy dx" queda

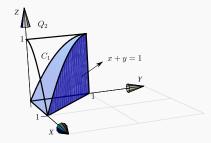
$$V_Q = \int_0^1 \int_0^{1-x} 1 - x^2 - 0 \, dy \, dx$$
$$= \int_0^1 1 - x - x^2 (1-x) \, dx = \frac{5}{12}$$

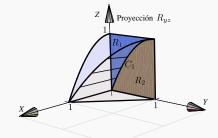


• Cálculo de V_Q proyectando sobre el plano YZ. En este caso, el sólido no está entre dos superificies. Desde el punto de vista del plano YZ, tenemos un sólido Q_1 que está entre x=0 y $z=1-x^2$ en la región R_1 y un sólido Q_2 que está entre x=0 y el plano x+y=1 en R_2 . Ademas, $Q=Q_1\cup Q_2$, como se muestra en la figura, y entonces

$$V_Q = V_{Q_1} + V_{Q_2}$$





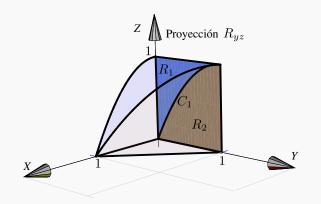


La proyección sobre este plano se muestra en la figura. La curva de proyección C_1 es la proyección sobre YZ de la curva de intersección entre la superficie $z=1-x^2$ y el plano x+y=1. C_1 tiene ecuación en términos de x e y.

$$z = 1 - x^2 \cap x + y = 1 \implies z = 1 - (1 - y)^2, y \in [0, 1]$$

La curva C_1 divide la región de integración en dos partes,

la región R_1 y la región R_2 .



Ejemplo 5.5 (continuación).

Desde el punto de vista del plano YZ, el sólido está limitado por las superficies

- $x = \sqrt{1-z}$ y x = 0 sobre R_1 .
- $x = 1 y \ y \ x = 0 \text{ sobre } R_2.$

Integrando en el orden "dz dy" queda

$$V_Q = \int_0^1 \int_{2y-y^2}^1 \sqrt{1-z} - 0 \, dz \, dy + \int_0^1 \int_0^{2y-y^2} 1 - y - 0 \, dz \, dy$$
$$= \int_0^1 \frac{2 \left(1 - 2y + y^2\right)^{3/2}}{3} \, dy + \int_0^1 \left(2y - 3y^2 + y^3\right) \, dy = \frac{5}{12}$$

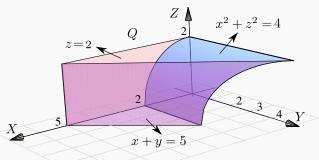
Nota: $(1-2y+y^2)^{3/2} = \sqrt{(y-1)^6} = |(y-1)^3| = -(y-1)^3$ si $y \in [0,1]$.

Ejemplo 5.6

Sea Q el sólido limitado por las superficies $x^2 + z^2 = 4$, x + y = 5, z = 2, y = z = 0.

Plantear la o las integrales dobles necesarias para calcular V_Q usando como región R cada una de las proyecciones del sólido sobre los planos YZ, XZ, XY

• Hacer clic en la figura para ver en 3D (en Internet)

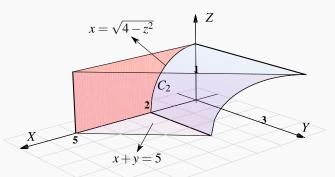


Solución:

ullet Cálculo de V_Q proyectando sobre el plano XZ.

La proyección R_{yz} sobre el plano xz se muestra en la figura. La ecuación de la curva C_2 corresponde a $x^2 + z^2 = 4$ con $x \in [0,2]$.

Sobre la región R_{yz} , el sólido Q esta entre las superficies y = 0 (abajo) y y = 5 - x (arriba).



Ejemplo 5.6 (continuación).

Usando el orden de integración "dx dz" tenemos

$$V_Q = \int_0^2 \int_{\sqrt{4-z^2}}^5 5 - x - 0 \, dx \, dz$$

$$= \int_0^2 \frac{29}{2} - \frac{z^2}{2} - 5 \sqrt{4-z^2} \, dz$$

$$= \left. \frac{29z}{2} - \frac{z^3}{6} - \frac{5z\sqrt{4-z^2}}{2} - 10 \arcsin\left(\frac{z}{2}\right) \right|_0^2 = \frac{83}{3} - 5\pi \approx 11.9587$$

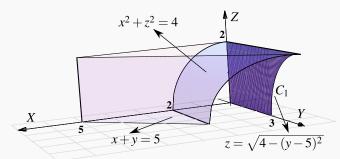
Nota: Utilizando la sustitución trigonométrica $\frac{z}{2} = \sin \theta$, se obtiene (salvo constantes)

$$\int \sqrt{4-z^2} dz = \frac{z\sqrt{4-z^2}}{2} + 2\arcsin\left(\frac{z}{2}\right).$$

ullet Cálculo de V_Q proyectando sobre el plano YZ.

La proyección R_{yz} sobre el plano yz se muestra en la figura Para hallar la ecuación de la curva C_1 observe que esta curva esta arriba del eje y por lo que:

$$C_1: x^2 + z^2 = 4 \cap x + y = 5 \implies \begin{cases} z = +\sqrt{4 - (5 - y)^2} & \text{si} \quad y \in [3, 5] \\ & \text{o} \\ y = 5 - \sqrt{4 - z^2} & \text{si} \quad z \in [0, 2] \end{cases}$$



Sobre la región R_{yz} , el sólido Q está entre las superficies $x=\sqrt{4-z^2}$ (abajo) y x=5-y (arriba).

Usando el orden de integración "dy dz" tenemos

$$V_Q = \int_0^2 \int_0^{5-\sqrt{4-z^2}} 5 - y - \sqrt{4-z^2} \, dy \, dz = \frac{83}{3} - 5 \, \pi \approx 11.9587$$

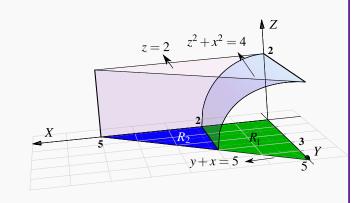
Ejemplo 5.6 (continuación).

ullet Cálculo de V_Q proyectando sobre el plano XY.

La proyección sobre el plano se muestra en la figura. La ecuación de la curva C_3 corresponde a y=5-x con $x\in[0,5]$. Esta curva divide la región de integración en dos regiones R_1 y R_2 . El sólido Q esta limitado por las superficies

- $z = \sqrt{4 x^2}$ (abajo) y z = 2 (arriba) sobre R_1
- z = 0 (abajo) y z = 2 (arriba) sobre R_2

Usando el orden de integración "dy dx" tenemos

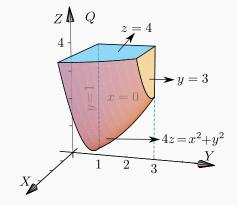


$$V_Q = \int_0^2 \int_0^{5-x} 2 - \sqrt{4-x^2} \, dy \, dx + \int_2^5 \int_0^{5-x} 2 - 0 \, dy \, dx = \frac{83}{3} - 5 \, \pi \approx 11.9587$$

Ejemplo 5.7

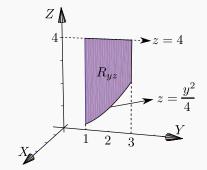
El sólido Q esta limitado por las superficies $4z = x^2 + y^2$, y = 3, y = 1, z = 4, y = 0.

- a.) Dibuje la región de integración en el plano yz.
- b.) Plantee la o las integrales correspondientes al volumen del sólido utilizando la proyección del item anterior.



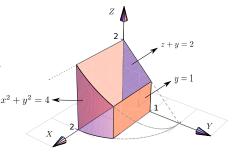
Solución: La región de integración aparece en la figura.

$$V_{Q} = \int_{1}^{3} \int_{y^{2}/4}^{4} \sqrt{4z - y^{2}} - 0 \, dz \, dy$$

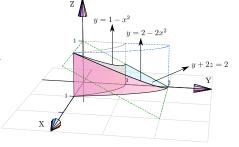


EJERCICIOS

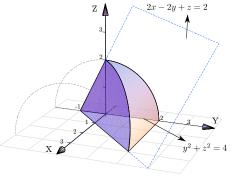
- Hacer clic en la figura para ver en 3D (en Internet)
- **5.1** Plantear la o las integrales necesarias para calcular el volumen del sólido Q si este sólido está limitado por $x^2 + y^2 = 4$; z + y = 2; y = 1; x = 0; y = 0 y z = 0, en el I octante



5.2 Plantear la o las integrales necesarias para calcular el volumen del sólido Q si este sólido está limitado por las superficies $y=2-2x^2$; $y=1-x^2$; y+2z=2; z=0 y z=0; en el I octante.

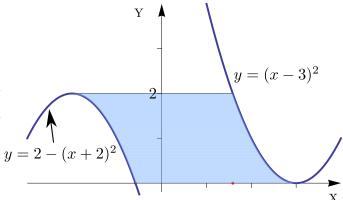


5.3 Plantear la o las integrales necesarias para calcular el volumen sólido Q si este sólido está limitado por la superficie $y^2 + z^2 = 4$ y los planos 2x - 2y + z = 2; z = 0 y z = 0.

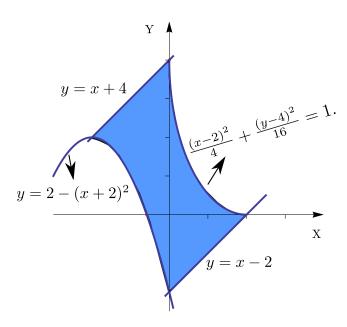


5.4 El área de la región R_{xy} viene dada por $\int_0^1 \int_0^y dx \, dy + \int_1^2 \int_0^{\sqrt{2-y}} dx \, dy$. Dibuje la región R_{xy} y calcule la integral en el orden $dy \, dx$.

5.5 Considere la región R a la derecha. Esta región está limitada por las curvas $y=0;\ y=2;\ y=2-(x+2)^2$ y $y=(x-3)^2$. Plantear la integral $\iint_R f(x,y)\,dA$ en el orden "dxdy" y en el orden "dydx"



5.6 Considere la región R (figura a la derecha). Esta región está limitada por las curvas $y=x+4;\ y=x-2;\ y=2-(x+2)^2\ y\ (x-2)^2/4+(y-4)^2/16=1.$ Plantear la integral $\iint_R f(x,y)\,dA$ en el orden "dxdy" y en el orden "dydx"



- 5.7 El área de una región R es $A_R = \int_{-1}^0 \int_{y}^{y^2} 1 \cdot dx \, dy$.
 - **a)** Dibuje a región de integración *R*
 - b) Plantee la integral anterior invirtiendo el orden de integración.
 - c) Calcule A_R .

5.4 Cambio de variable en una integral doble.

En una variable, si f es continua en [a, b] y x = x(u) está definida en $[u_1, u_2]$ y tiene una derivada continua, con $a = x(u_1)$ y $b = x(u_2)$ y si f(x(u)) es continua en $[u_1, u_2]$, entonces

$$\int_{a}^{b} f(x) dx = \int_{u_{1}}^{u_{2}} f(x(u)) \frac{dx}{du} du \quad (*)$$

La inversa u = u(x) existe solo si x(u) es strictamente creciente o decreciente, pero no es una condición que se pida en la fórmula (*).

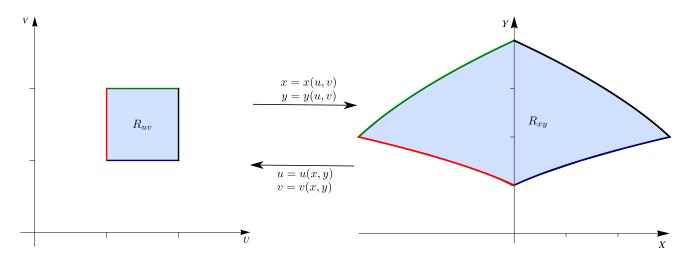
Hay una fórmula análoga a (*) para integrales dobles;

$$\iint_{R_{xy}} f(x,y) dx dy = \iint_{R_{uv}} f(x(u,v), y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv \quad \text{con} \quad \frac{\partial(x,y)}{\partial(u,v)} = \mathbf{Det} \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

Se asume que las funciones x = x(u,v), y = y(u,v) están definidas y tienen derivadas parciales continua en la región de integración R_{uv} en el plano uv. En este caso si se asume que las funciones inversas u = u(x,y), v = v(x,y) están definidas y son continuas en R_{xy} y que hay un mapeo invertible entre el interior de R_{xy} y el interior de R_{uv} . La función f(x,y) se asume continua en R_{xy} y así f(x(u,v),y(u,v)) es continua en R_{uv} . También se asume que el Jacobiano

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)}$$
 es no nulo en el *interior* de R_{uv} .

La restricción de que el cambio de variable sea invertible en el interior de R_{xy} (y por tanto que J(u,v) no se anule en el interior de R_{uv}) es necesaria para poder usar cambio de variable con coordenadas polares en regiones que contienen el origen.



Teorema 5.3 (Cambio de variable).

Sea R_{uv} una región compacta y conexa en el plano contenida en un cojunto abierto A de \mathbb{R}^2 . Sea $\mathbf{r}: A \to \mathbb{R}^2$ con $\mathbf{r}(u,v) = (x(u,v),y(u,v))$, una función continua con derivadas parciales continuas tal que \mathbf{r} es invertible en el

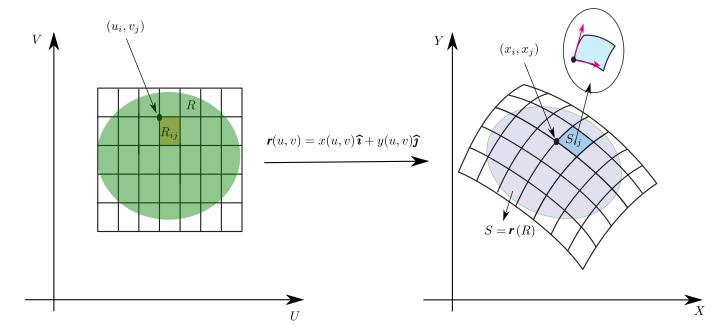
interior de
$$R_{uv}$$
 y $J(u,v) = \mathbf{Det} \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$ es no nulo en el interior de R_{uv} . Sea $R_{xy} = \mathbf{r}(R_{uv})$ y $f: R_{xy} \to \mathbb{R}$ una función continua. Entonces,

$$\iint_{R_{xy}} f(x,y) dx dy = \iint_{R_{uv}} f(x(u,v),y(u,v)) |J(u,v)| du dv$$

Notos. Observe que el Jacobiano J(u,v) va en valor absoluto dentro de la integral. Además solo se requiere que $\mathbf{r}(u,v)$ sea invertible en el interior de R_{uv} y por tanto |J(u,v)| no se anule en el interior de R_{uv} .

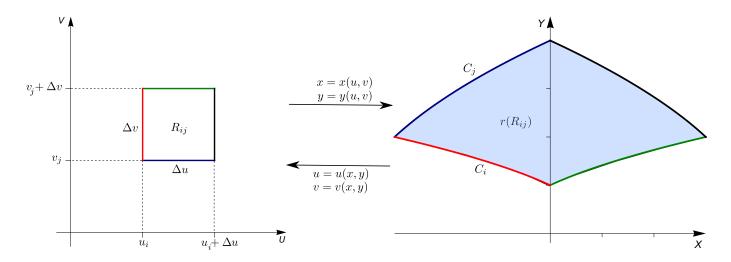
Para verificar que un cambio de variable es invertible en una región uno podría, si se puede, calcular la transformación inversa $\mathbf{r}^{-1}(x,y)$. En los ejemplos de este libro es sencillo calcular esta inversa. El 'Teorema de la Función Inversa' solo dice, con las hipótesis respectivas, que si $J(u_0,v_0)$ no se anula, entonces $\mathbf{r}(u,v)$ es invertible en un entorno de (u_0,v_0) , pero no nos da información de si hay una inversa 'global'. Sin embargo en la literatura se encuentran teoremas con condiciones especiales para 'globalizar' el resultado.

Idea geométrica. Consideremos el cambio de variable x = x(u,v), y = (u,v) que transforma R en S y que cumplen las condicioes del teorema. Este cambio de variable define una función invertible $\mathbf{r}(u,v) = x(u,v)\hat{\imath} + y(u,v)\hat{\jmath}$ en el interior de S y $S = \mathbf{r}(R)$.



Tomemos un rectángulo R_{ij} de una malla \mathcal{M} de R. \boldsymbol{r} transforma el lado $u=u_i$ en la curva $C_i: \boldsymbol{r}(u_i,v), v \in [v_j,v_j+\Delta v]$ y el lado $v=v_j$ en la curva $C_j: \boldsymbol{r}(u,v_j), v \in [u_i,u_i+\Delta u]$.

Si además \mathbf{r}^{-1} es continua, \mathbf{r} es un homeomorfismo y la frontera del rectángulo R_{ij} es 'mapeada' en la frontera de $S = \mathbf{r}(R_{ij})$ y el interior en el interior.



Si $\mathbf{r}(u_i,v_j)=(x_i,y_j)$, un vector tangente en (x_i,y_j) en C_i es $\frac{\partial \mathbf{r}(u_i,v)}{\partial v}\Big|_{v=v_j}$. Como este vector representa la velocidad a la que se desplaza el punto $\mathbf{r}(u_i,v)$ cuando v va de v_j a $v_j+\Delta v$, entonces en la curva C_i , (x_i,y_j) se desplaza, en el tiempo Δv , una distancia aproximada $\frac{\partial \mathbf{r}(u_i,v)}{\partial v}\Big|_{v=v_j}\Delta v$. Usando el teorema del valor medio para derivadas lo diariamos así,

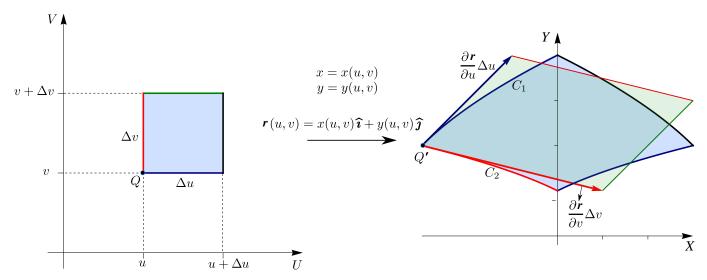
$$\mathbf{r}(u_i, v + \Delta v) - \mathbf{r}(u_i, v) \approx \Delta u \, \mathbf{r}_v$$

Analogamente, un vector tangente en (x_i, y_j) en C_j es $\frac{\partial \mathbf{r}(u, v_j)}{\partial v}\Big|_{u=u_i}$. Como este vector representa la velocidad a la que se desplaza el punto $\mathbf{r}(u,v_j)$ cuando u va de u_i a $u_i + \Delta u$, entonces en la curva C_J , (x_i,y_j) se desplaza, en el tiempo Δv , una distancia aproximada $\frac{\partial \mathbf{r}(u,v_j)}{\partial u}\Big|_{u=u_i} \Delta u$.

Por tanto, el rectángulo R_{ij} en R, se transforma en una porción del plano XY que es casi el paralelogramo de lados $\frac{\partial \mathbf{r}(u_i, v)}{\partial v} \Big|_{v=v_j} \Delta v \quad y \quad \frac{\partial \mathbf{r}(u, v_j)}{\partial u} \Big|_{u=u_i} \Delta u. \quad \text{El área de este paralelogramo es, en términos de producto vectorial,} \\ \left| \frac{\partial \mathbf{r}(u_i, v)}{\partial v} \right|_{v=v_i} \times \left. \frac{\partial \mathbf{r}(u, v_j)}{\partial u} \right|_{u=u_i} \Delta u \Delta v \right|$

$$\left| \frac{\partial \boldsymbol{r}(u_i, v)}{\partial v} \right|_{v=v_j} \times \left. \frac{\partial \boldsymbol{r}(u, v_j)}{\partial u} \right|_{u=u_i} \Delta u \Delta v \right|$$

En la figura que sigue se ilustra esta situación con un punto genérico (u,v).



El área del paralelogramo "curvilíneo" es aproximadamente el área del paralelogramo de lados $\frac{\partial \mathbf{r}}{\partial \tau_1} \Delta v$ y $\frac{\partial \mathbf{r}}{\partial u} \Delta u$. El área de este último paralelogramo es

$$\begin{vmatrix} \frac{\partial \mathbf{r}}{\partial v} \times \frac{\partial \mathbf{r}}{\partial u} \middle| \Delta u \Delta v = \begin{vmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & 0 \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = |J(u,v)| \mathbf{\hat{k}}$$

De esta manera, si I(u,v) = 1, el cambio de variable conserva las áreas. Sino, el área de cada paralelogramo en XY es aproximadamente el área de cada rectángulo en UV, múltiplicada por |J(u,v)|. Por eso decimos que |J(u,v)|opera como un factor de compensación por la 'deformación' sufrida por la región ante un cambio de variable. Si la integral existe, deberíamos tener

$$A_{S} = \iint_{S} 1 \, dx \, dy \approx \sum_{i=1}^{m} \sum_{i=1}^{n} A_{S_{ij}} \approx \sum_{i=1}^{m} \sum_{i=1}^{n} |J(u,v)|_{u=u_{i}, v=v_{j}} \Delta u \Delta v = \iint_{R} |J(u,v)| \, du \, dv$$

Y en general,

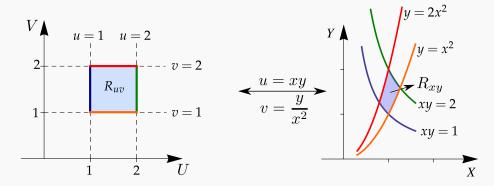
$$A_{S} = \iint_{S} f(x,y) \, dx \, dy \approx \sum_{i=1}^{m} \sum_{j=1}^{m} f(x_{i},y_{j}) A_{S_{ij}} \approx \sum_{i=1}^{m} \sum_{j=1}^{m} f(\mathbf{r}(u_{i},v_{j})) |J(u,v)|_{u=u_{i}, v=v_{j}} \Delta u \Delta v = \iint_{R} f(u,v) |J(u,v)| \, du \, dv$$

Ejemplo 5.8

Haciendo el cambio de variable u=xy, $v=\frac{y}{x^2}$; con x>0 y y>0, determine el área de la región R_{xy} encerrada por las curvas xy=1, xy=2, $y=x^2$ y $y=2x^2$.

Solución: Para calcular el área usando el cambio de variable, debemos dibujar la nueva región de integración R_{uv} en el plano UV a partir de la región R_{xy} dada y el cambio de variable que se indica. Como la inversa del cambio de variable es continua si v > 0, esto se puede hacer aplicando el cambio de variable a las curvas frontera de la región R_{xy} y calculando las respectivas curvas en el plano UV.

Nuevo región. Como u=xy, Las curvas xy=1 y xy=2 corresponden a las curvas u=1 y u=2 en el plano UV. Como $v=\frac{y}{x^2}$, las curvas $y=x^2$ y $y=2x^2$ corresponden a las curvas v=1 y v=2 en el plano UV.



El cambio de variable es invertible: El cambio de variable 'mapea' la región R_{uv} en la región R_{xy} pues el cambio de variable es invertible y la inversa es continua si v > 0. En efecto, como x > 0 y y > 0 entonces u > 0 y v > 0.

Luego como
$$y = vx^2 \implies u = x^3v$$
, de donde $x = \sqrt[3]{\frac{u}{v}} \quad y \quad y = v \cdot \sqrt[3]{\frac{u^2}{v^2}}$.

Calcular el Jacobiano. Ahora, $J(x,y) = \mathbf{Det} \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \mathbf{Det} \begin{pmatrix} y & x \\ -2y/x^3 & 1/x^2 \end{pmatrix} = 3y/x^2 > 0$, pues x, y > 0.

Como las derivadas parciales de x e y son continuas y el jacobiano es no nulo, entonces por el teorema de la función inversa,

•
$$J(u,v) = \frac{1}{J(x,y)} = \frac{1}{3y/x^2} = \frac{1}{3v} > 0$$
 pues $v > 0$.

Ejemplo 5.8 (continuación).

Calcular el área. El área de la región es

$$A_{R_{xy}} = \int_{1}^{2} \int_{1}^{2} 1 \cdot |J(u,v)| \cdot du \, dv$$

$$= \int_{1}^{2} \int_{1}^{2} 1 \cdot \frac{1}{3v} \cdot du \, dv$$

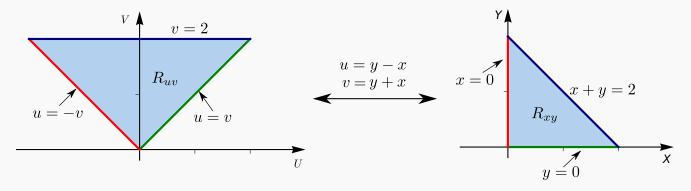
$$= \int_{1}^{2} \frac{1}{3v} \, dv = \left. \frac{1}{3} \ln(v) \right|_{1}^{2} = \frac{1}{3} \ln(2).$$

Ejemplo 5.9

Calcular $\iint_{R_{xy}} e^{\frac{y-x}{y+x}} dA$ usando el cambio de variable u=y-x y v=y+x. La región R_{xy} está limitada por las rectas x+y=2, x=0 y y=0.

Solución: Primero debemos dibujar las región de integración R_{uv} para luego integrar.

Nueva región de integración. El cambio de variable es invertible y la inversa es continua, entonces aplicamos el cambio de variable a la frontera de la región R_{xy} para calcular las curvas frontera de la región R_{uv} . Como v = y + x, el segmento de recta x + y = 2 corresponde a v = 2. Si x = 0 entonces u = v y si y = 0 entonces u = -v.

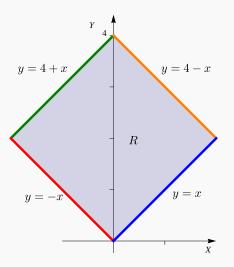


El cambio de variable es invertible: Resolviendo $\left\{ \begin{array}{lcl} u & = & y-x \\ v & = & y+x \end{array} \right.$ obtenemos $x=\frac{1}{2}(v-u)$ y $y=\frac{1}{2}(v+u)$.

Calculamos el Jacobiano.
$$J(u,v) = \mathbf{Det} \begin{pmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} = -1/2.$$

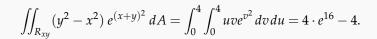
$$\text{C\'alculo d ela integral. } \iint_{R_{xy}} e^{\frac{y-x}{y+x}} dA \ = \ \iint_{R_{uv}} e^{\frac{u}{v}} |J(u,v)| \, du \, dv \ = \ \frac{1}{2} \int_0^2 \int_{-v}^v e^{\frac{u}{v}} \, du \, dv \ = \ e - \frac{1}{e}.$$

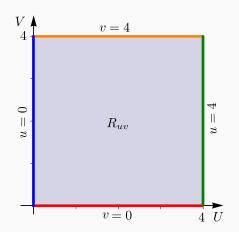
Calcule $\iint_{R_{xy}} (y^2-x^2) \, e^{(x+y)^2} \, dA$, donde R_{xy} es la región mostrada en la figura. Utilice el cambio de variable $\left\{ egin{align*} u=y-x \\ v=y+x \end{array} \right.$



Solución: Si
$$\begin{cases} u = y - x \\ v = y + x \end{cases}$$
 Entonces $\begin{cases} x = \frac{1}{2}(v - u) \\ y = \frac{1}{2}(u + v) \end{cases}$

Como la inversa es continua, aplicando el cambio de variable a la frontera de R_{xy} , obtenemos la frontera de la región R_{uv} . A y=-x+4 le corresponde, sustituyendo x e y, v=4. A y=-x le corresponde v=0 y A y=x+4 le corresponde u=4. La nueva región es más simple.





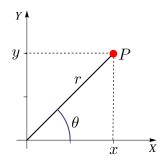
Como se ve en los ejemplos anteriores, en la práctica se usa el cambio de variable en la forma x = x(u,v), y = (u,v) tanto como u = u(x,y), v = v(x,y). Siempre hay que estar al tanto de que se cumplan las hipóstesis, en particular la invertibilidad.

5.4.1 Caso de Coordenadas Polares.

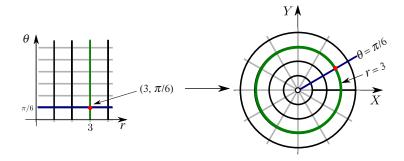
Este cambio de variable es muy útil cuando la región de integración tiene fronteras a lo largo de las cuales r y θ son constantes (como en círculos centrados en el origen). Primero un pequeño repaso.

Un punto $P=(x,y)\in\mathbb{R}^2$ se puede especificar en coordenadas polares (r,θ) donde r es la distancia del origen a P y θ es el ángulo medido desde el eje X contrareloj. La conversión de coordenadas polares a coordenadas cartesianas se hace con la transformación

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$$
 (*)



Para efectos de cambio de variable, esta transformación es invertible si r>0 y si $\theta\in[\theta_0,\,\theta_0+2\pi[$. Podemos definir la inversa desde $\mathbb{R}^+\times[0,\,2\pi[$ a $\mathbb{R}^2-\{(0,0)\}$ con $r=\sqrt{x^2+y^2}$ y θ el único ángulo $\theta\in[0,\,2\pi[$ que satisface (*), es decir $\theta=\arctan(y/x)$ si x>0 y $\theta=\arctan(y/x)+\pi$ si x<0 pues $\arctan(t)$ está definida en $]-\pi/2,\,\pi/2[$ (si r=0, el cambio de variable aplica todo el eje θ en el origen (0,0).)

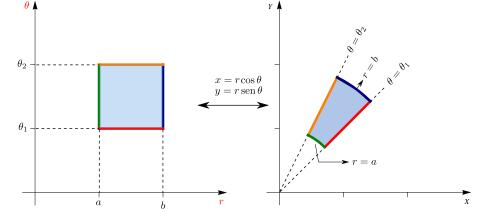


Poniendo u = r y $v = \theta$ tenemos el cambio de variable,

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$$

En este caso,

$$J(r,\theta) = \left| \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} \right| = r$$



Como ya indicamos, este cambio de variable es invertible si r > 0 y si $\theta \in [\theta_0, \theta_0 + 2\pi[$ (a veces es cómodo tomar ángulos negativos).

Si en R y R' se cumplen las condiciones del teorema de cambio de variable, entonces

$$\iint_{R} f(x,y) dx dy = \iint_{R'} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$$

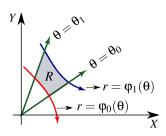
ullet En el caso de coordenadas polares, la nueva región $R_{r\theta}$ se puede describir en el mismo sistema XY.

• Si una región *R* se puede describir como una región en coordenadas polares tal que

$$0 < \varphi_0(\theta) < r < \varphi_1(\theta)$$
 si $\theta_0 < \theta < \theta_1$

entonces

$$\iint_{R} f(x,y) dx dy = \int_{\theta_{0}}^{\theta_{1}} \int_{\varphi_{0}(\theta)}^{\varphi_{1}(\theta)} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$$



• Si una región *R* se puede describir como una región en coordenadas polares tal que

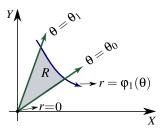
$$0 \le r \le \varphi_1(\theta)$$
 si $\theta_0 \le \theta \le \theta_1$

entonces

$$\iint_{R} f(x,y) dx dy = \int_{\theta_{0}}^{\theta_{1}} \int_{0}^{\varphi_{1}(\theta)} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$$

Nota. En este caso, el cambio de variable es invertible en el interior de

la región (r > 0) y además aquí el Jacobiano no se anula, así que no afecta que r = 0.



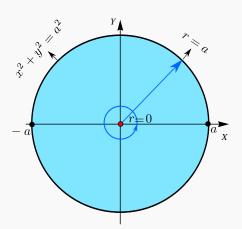
Ejemplo 5.11

Calcular el área A_c del círculo de radio a.

Solución: Para este cálculo podemos usar un círculo de radio a, centrado en el origen. La circunferencia del círculo tiene ecuación cartesiana $x^2 + y^2 = a^2$. Para obtener la ecuación en polares, sustituimos $x = r\cos\theta$ e $y = r\sin\theta$ y despejamos r:

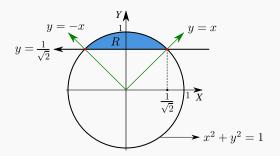
$$x^2 + y^2 = a^2 \implies (r\cos\theta)^2 + (r\sin\theta)^2 = a^2 \implies r^2 = a^2.$$

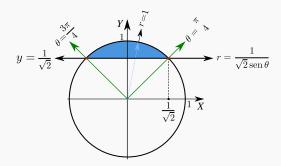
Así, en coordenadas polares, la región de integración va desde r=0 hasta r=a y $0 \le \theta \le 2\pi$.



$$A_c = \iint_R 1 \cdot dA = \int_0^{2\pi} \int_0^a r \, dr \, d\theta = \int_0^{2\pi} \frac{r^2}{2} \Big|_0^a \, d\theta = \int_0^{2\pi} \frac{a^2}{2} \, d\theta = \frac{a^2}{2} \theta \Big|_0^{2\pi} = \pi a^2$$

Considere la región R de la figura. Para calcular el área A_R de la región R, usando coordenadas polares, debemos hacer el cambio de variable $x = r\cos(\theta)$ y $y = r\sin(\theta)$.





Observe que

- La recta $y = \frac{1}{\sqrt{2}}$ se transforma en $r \operatorname{sen} \theta = \frac{1}{\sqrt{2}} \implies r = \frac{1}{\sqrt{2} \operatorname{sen}(\theta)}$.
- La circunferencia $x^2 + y^2 = 1$ se transforma en r = 1.
- La recta y = x se transforma en $\theta = \pi/4$. En efecto, $y = x \Longrightarrow \cos \theta = \sin(\theta) \Longrightarrow \theta = \pi/4$. Esto, por supuesto, también lo podemos establecer de manera geométrica.

$$\begin{split} A_R &= \iint_R 1 \cdot dA = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_{\frac{1}{\sqrt{2} \operatorname{sen}(\theta)}}^{1} r dr d\theta \\ &= \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{r^2}{2} \bigg|_{\frac{1}{\sqrt{2} \operatorname{sen}(\theta)}}^{1} d\theta = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{2} - \frac{1}{4} \frac{1}{\operatorname{sen}^2(\theta)} d\theta = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{2} - \frac{1}{4} \operatorname{csc}^2(\theta) d\theta = \frac{\theta}{2} + \frac{1}{4} \cot(\theta) \bigg|_{\frac{\pi}{4}}^{\frac{3\pi}{4}} = \frac{\pi - 2}{4} \end{split}$$

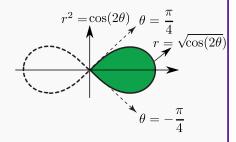
Ejemplo 5.13

Calcular el área de la región limitada por la curva de ecuación $(x^2 + y^2)^2 - x^2 + y^2 = 0$, $x \ge 0$ (región verde en la figura).

Solución: Haciendo el cambio de variable $x = r\cos\theta$ y $y = r\sin\theta$ y sustituyendo en $(x^2 + y^2)^2 - x^2 + y^2 = 0$, obtenemos

$$(r^{2}\cos(\theta)^{2} + r^{2}\sin(\theta)^{2})^{2} - r^{2}\cos(\theta)^{2} + r^{2}\sin(\theta)^{2} = 0$$

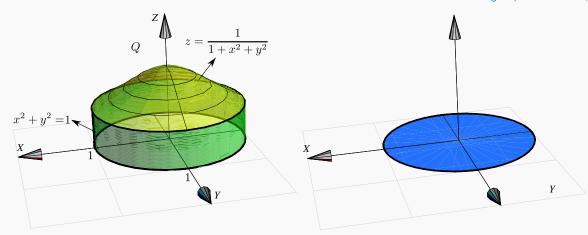
Simplificando queda $r^2 = \cos(2\theta)$, que es la ecuación de la lemniscata. Como $x \ge 0$ entonces la mitad de la lemniscata que nos interesa es $r = \sqrt{\cos(2\theta)}$. Las tangentes al polo son $\theta = -\pi/4$ y $\theta = \pi/4$.



Luego, el área de la región es $\int_{-\pi/4}^{\pi/4} \int_{0}^{\sqrt{\cos(2\theta)}} r dr d\theta = 1/2 \int_{-\pi/4}^{\pi/4} \cos(2\theta) d\theta = 1/2.$

Calcule el volumen del sólido Q limitado por las superficies $z=\frac{1}{1+x^2+y^2}$, $x^2+y^2=1$ y z=0.

• Hacer clic en la figura para ver en 3D (en Internet)



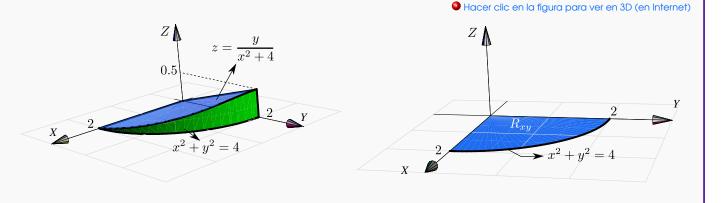
Solución: El sólido y su proyección sobre el plano XY se ven en la figura. El sólido Q está limitado por $z=\frac{1}{1+x^2+y^2}$ y z=0. Aplicando coordenadas polares (y como no hay singularidades) tenemos

$$V_Q = \iint_R \frac{1}{1+x^2+y^2} dA = \int_0^{2\pi} \int_0^1 \frac{1}{1+r^2} r dr d\theta = \int_0^{2\pi} \frac{1}{2} \ln(1+r^2) \Big|_0^1 d\theta = \int_0^{2\pi} \frac{1}{2} \ln(2) d\theta = \pi \ln(2)$$

Ejemplo 5.15

Plantear una integral, en polares, para calcular el volumen del sólido Q limitado por las superficies $z = \frac{y}{x^2 + 4}$, $x^2 + y^2 = 4$ y z = 0 con $x \ge 0$ y $y \ge 0$.

Solución: El sólido y su proyección sobre el plano *XY* se ven en la figura.



Ejemplo 5.15 (continuación).

Pasando a coordenadas polares tenemos

$$V_Q = \iint_R \left(\frac{y}{x^2 + 4} - 0\right) dA$$
$$= \int_0^{\pi/2} \int_0^2 \frac{r \operatorname{sen}(\theta)}{r^2 \cos^2(\theta) + 4} r dr d\theta$$

Nota: Esta última integral se puede calcular observando que

- $\int x \arctan(x) dx = \frac{1}{2} \left(-x + \left(1 + x^2 \right) \arctan x \right)$, salvo constantes.
- $\int_0^{\pi/2} \int_0^2 f(r,\theta) dr d\theta = \int_0^2 \int_0^{\pi/2} f(r,\theta) d\theta dr$, pues estamos integrando sobre un rectángulo.

Veamos,

$$V_{Q} = \iint_{R} \frac{y}{x^{2} + 4} dA = \int_{0}^{\pi/2} \int_{0}^{2} \frac{r^{2} \operatorname{sen}(\theta)}{r^{2} \cos^{2}(\theta) + 4} dr d\theta$$

$$= \int_{0}^{2} \int_{0}^{\pi/2} \frac{r^{2} \operatorname{sen}(\theta)}{r^{2} \cos^{2}(\theta) + 4} d\theta dr = \int_{0}^{2} \int_{0}^{1} \frac{r^{2}}{4 + r^{2} u^{2}} du dr, \text{ (haciendo } u = \cos \theta).$$

$$= \int_{0}^{2} \int_{0}^{1} \frac{r}{2} \frac{r/2}{1 + (ru/2)^{2}} du dr = \int_{0}^{2} \frac{r}{2} \arctan(ru/2) \Big|_{0}^{1} dr = \int_{0}^{2} \frac{r}{2} \arctan(r/2) dr$$

$$= 2 \int_{0}^{1} x \arctan(x) dx = \frac{1}{2} (\pi - 2).$$

Ejemplo 5.16

Calcule $\iint_R \frac{xy}{(1+x^2+y^2)^2} dA$ si $R = \{(x,y) \in \mathbb{R} : x^2+y^2 \le 1, x \ge 0, y \ge 0\}.$

Solución: La región R es la parte del círculo de radio 1, centrado en el origen, que está en el primer octante. Aquí usamos el hecho de que $\int_a^b \int_p^q f(\theta)g(r)drd\theta = \int_a^b f(\theta)d\theta \cdot \int_p^q g(r)dr$.

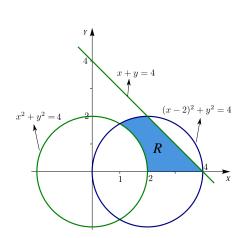
$$\iint_{R} \frac{xy}{(1+x^2+y^2)^2} dA = \int_{0}^{\pi/2} \int_{0}^{1} \frac{r^3 \cos \theta \sin \theta}{(1+r^2)^2} dr d\theta$$

Ejemplo 5.16 (continuación).

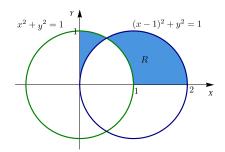
$$\begin{split} \iint_{R} \frac{xy}{(1+x^2+y^2)^2} \, dA &= \int_{0}^{\pi/2} \cos\theta \sin\theta \, d\theta \cdot \int_{0}^{1} \frac{r^3}{(1+r^2)^2} \, dr \\ &= \frac{1}{2} \cdot \int_{0}^{1} \frac{r^3}{(1+r^2)^2} \, dr \\ &= \frac{1}{8} \int_{0}^{1} \frac{4r^3 + 4r}{1 + 2r^2 + r^4} \, dr - \frac{1}{4} \int_{0}^{1} \frac{2r}{(1+r^2)^2} \, dr \\ &= \frac{1}{8} \ln|1 + 2r^2 + r^4| \Big|_{0}^{1} + \frac{1}{4} \frac{1}{1+r^2} \Big|_{0}^{1} = \frac{1}{8} \ln 4 - \frac{1}{8}. \end{split}$$

EJERCICIOS

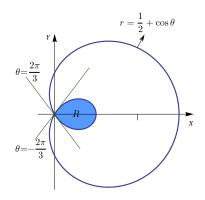
- **5.8** Usando el cambio de variable $x = u^2 v^2$, y = 2uv; calcular $I = \iint_T xy dA$ donde T es el rectángulo de vértices (1,1), (2,1), (2,3) y (1,3).
- **5.9** Calcule $\iint_T e^{(x+y)/(x-y)} dA$ usando el cambio de variable u = x + y, v = x y; donde T es el trapecio de vértices (1,0), (2,0), (0,-2) y (0,-1).
- **5.10** Calcule $\iint_T \cos\left(\frac{y-x}{y+x}\right) dA$ donde T es el trapecio de vértices (1,0), (2,0), (0,2) y (0,1). **Ayuda:** Usar cambio de variable u=y-x, v=y+x.
- **5.11** Calcule $\iint_T xy \, dA$ donde T es la región limitada por y = x, y = 3x, xy = 1 y xy = 3; en el primer cuadrante. Use el cambio de variable x = u/v y y = v.
- **5.12** Plantear la o las integrales necesarias para calcular $\iint_R \frac{dA}{\sqrt{(x^2+y^2)^3}} dA$. La región R es la región limitada por los círculos $x^2+y^2=4$, $(x-2)^2+y^2=4$ y las rectas x+y=4, y=0, como se muestra en la figura.



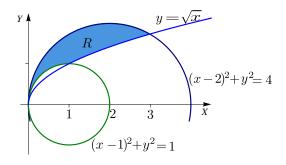
5.13 Plantear la o las integrales necesarias para calcular el área de la región R limitada por las circunferencias $x^2 + y^2 = 1$ y $(x - 1)^2 + y^2 = 1$.



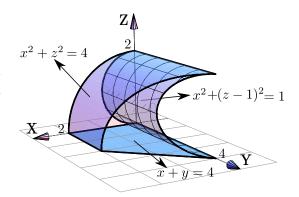
5.14 Calcular el área de la región limitada por el lazo de la curva $r=1/2+\cos\theta$. **Ayuda:** Notar que el lazo tiene ecuación $r=1/2+\cos\theta$, $2\pi/3 \le \theta \le 4\pi/3$.



5.15 Utilizando coordenadas polares, plantear la o las integrales que permiten calcular el área de la región R (región sombreada) mostrada en la figura.



5.16 Calcule el volumen del sólido Q limitado por las superficies $x^2 + z^2 = 4$, $x^2 + (z - 1)^2 = 1$ y x = 4 - y, en el primer octante; como se muestra en la figura. **Ayuda:** Proyectar sobre XZ y usar coordenadas polares.



5.5 Integral triple.

Consideremos un cubo Q como el de la figura a la derecha. Su volumen es $V_Q = abc$. Si la densidad ρ es constante en todo el cubo, la masa viene dada por

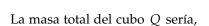
$$M_{\rm O} = \rho V_{\rm O}$$

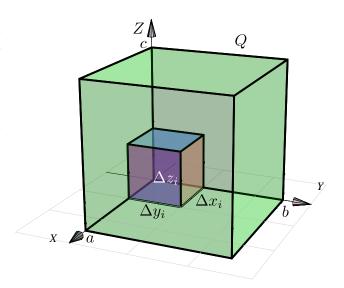
Si *la densidad no es constante* y $\rho = \rho(x,y,z)$, entonces para obtener una aproximación de la masa, dividimos Q en N cubos Q_i de volumen

$$\Delta V_i = \Delta x_i \Delta y_i \Delta z_i.$$

Así, la densidad en el punto $P_i(x_i, y_i, z_i)$ es

$$\Delta M_i \approx \rho(x_i, y_i, z_i) \Delta x_i \Delta y_i \Delta z_i$$
.





$$M \approx \sum_{i=1}^{N} \Delta M_i = \sum_{i=1}^{N} \rho(x_i, y_i, z_i) \Delta x_i \Delta y_i \Delta z_i$$

Ahora, tomando el límite cuando $N \rightarrow \infty$ (si existe), obtenemos

$$M = \lim_{N \to \infty} \sum_{i=1}^{N} \rho(x_i, y_i, z_i) \Delta x_i \Delta y_i \Delta z_i$$

Esto es muy parecido a la integral de Riemann que definimos al principio de este capítulo. En realidad podemos reemplazar la malla $\mathcal{M}_{\mathcal{R}}$ por $\mathcal{M}_{\mathcal{Q}} = \{Q_1, Q_2, ... Q_N\}$ y definir la integral triple de Riemann de una función f(x,y,z) sobre una región tridimensional Q como

$$\iiint_{Q} f(x,y,z)dV = \lim_{||\mathcal{M}_{Q}|| \to \infty} \sum_{i=1}^{\mathcal{C}(\mathcal{M}_{Q})} f(x_{i},y_{i},z_{i}) \Delta V_{i}$$

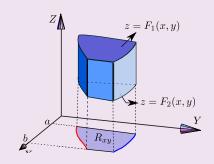
Los teoremas para integral doble se extienden de manera natural a la inegral triple.

(Integral Triple).

sólido limitado por superficies suaves de ecuación $z = F_1(x,y)$ $z = F_2(x,y) (F_1, F_2$ continuas) y con su proyección con derivadas parciales R_{xy} por funciones continuas. Si f(x,y,z)es continua sobre Q, entonces con derivadas

$$\iiint_{Q} f(x,y,z) dV = \iint_{R_{xy}} \left[\int_{F_{1}(x,y)}^{F_{2}(x,y)} f(x,y,z) dz \right] dy dx$$

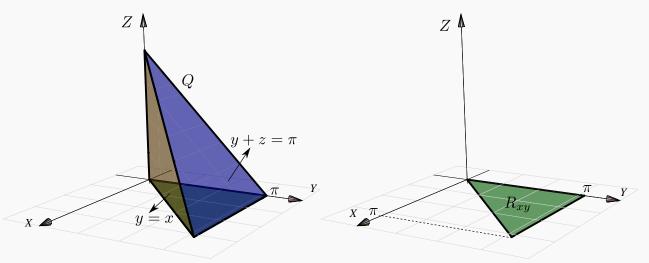
En particular,
$$V_Q = \iint_{R_{xy}} \int_{F_1(x,y)}^{F_2(x,y)} 1 dz dy dx$$



Ejemplo 5.17

Calcular $\iiint_{Q} x \cos(y+z) dV$ con Q el sólido limitado por $y+z=\pi$, y=x, x=z=0

• Hacer clic en la figura para ver en 3D (en Internet)

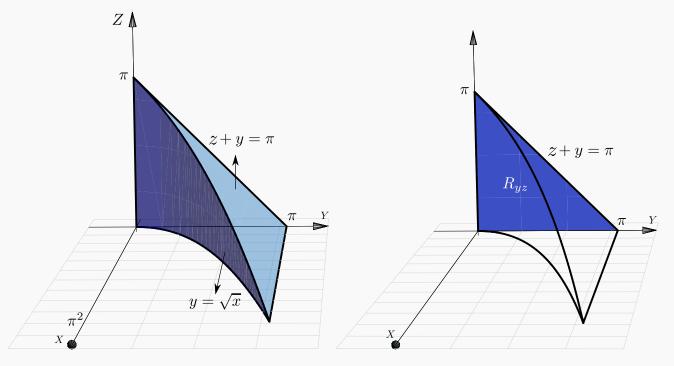


Solución: Para calcular esta integral triple vamos a necesitar la integral $\int x \cos x \, dx = \cos x + x \sin x + K$ (se calcula "por partes".) El sólido Q está entre las superficies z = 0 y $z = \pi - y$.

$$\iiint_{Q} x \cos(y+z) dV = \int_{0}^{\pi} \int_{x}^{\pi} \left[\int_{0}^{\pi-y} x \cos(y+z) dz \right] dy dx$$
$$= \int_{0}^{\pi} \int_{x}^{\pi} x \sin(y+z) |_{0}^{\pi-y} dy dx = \int_{0}^{\pi} \int_{x}^{\pi} -x \sin(y) dy dx = 2 - \frac{\pi^{2}}{2}$$

Calcular, usando el orden "dx dz dy", $I = \iiint_Q 2x \cos(y+z) dV$ con Q el sólido limitado por las superficies (ver figura) $y+z=\pi$, $y=\sqrt{x}$, x=z=0

• Hacer clic en la figura para ver en 3D (en Internet)



Solución: Por el orden de integración que se pide, debemos proyectar sobre el plano YZ. Usaremos las integral $\int y^4 \sin y \, dy = -\left(24-12\,y^2+y^4\right)\cos y + 4\,y\left(-6+y^2\right)\sin y + K$, que se calcula "por partes". El sólido Q está entre x=0 y $x=y^2$.

$$\iiint_{Q} 2x \cos(y+z) dV = \int_{0}^{\pi} \int_{0}^{\pi-y} \left[\int_{0}^{y^{2}} 2x \cos(y+z) dx \right] dz dy$$

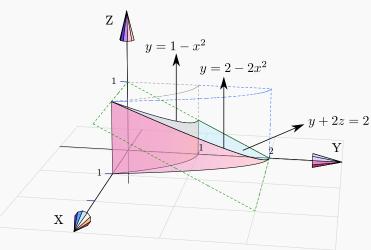
$$= \int_{0}^{\pi} \int_{0}^{\pi-y} x^{2} \cos(y+z) \Big|_{0}^{y^{2}} dz dy$$

$$= \int_{0}^{\pi} \int_{0}^{\pi-y} y^{4} \cos(y+z) dz dy$$

$$= \int_{0}^{\pi} y^{4} \sin(y+z) \Big|_{0}^{\pi-y} dy$$

$$= \int_{0}^{\pi} -y^{4} \sin(y) dy = -48 + 12 \pi^{2} - \pi^{4}$$

Considere el sólido Q limitado por z=0, y+2z=2, x=0 y $y=1-x^2$ tal y como se muestra en la figura. Usando integral triple, *Plantear* la integrales necesarias para calcular el volumen de Q proyectando en cada uno de los planos XY, YZ y XZ.



• Hacer clic en la figura para ver en 3D (en Internet)

Solución:

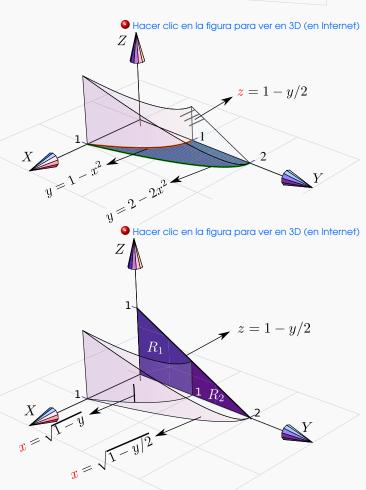
Proyectando sobre *XY*. La región de integración R_{xy} está entre las curvas $y = 1 - x^2$ y $y = 2 - 2x^2$ y en esta región el sólido está entre z = 0 y z = 1 - y/2.

$$V_Q = \int_0^1 \int_{1-x^2}^{2-2x^2} \left[\int_0^{1-y/2} 1 \, dz \right] \, dy \, dx$$

Proyectando sobre YZ. La región de integración es $R_{yz} = R_1 + R_2$. La región R_1 está entre las rectas z = 0 y z = 1 - y/2 y el sólido está entre $x = \sqrt{1 - y}$ y $x = \sqrt{1 - y/2}$.

La región R_2 está entre las rectas z=0 y z=1-y/2 y en esta región el sólido está entre x=0 y $x=\sqrt{1-y/2}$.

$$V_{Q} = \int_{0}^{1} \int_{0}^{1-y/2} \left[\int_{\sqrt{1-y}}^{\sqrt{1-y/2}} 1 \, dx \right] dz \, dy$$
$$+ \int_{1}^{2} \int_{0}^{1-y/2} \left[\int_{0}^{\sqrt{1-y/2}} 1 \, dx \right] dz \, dy$$

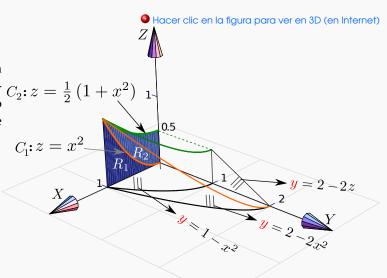


Ejemplo 5.19 (continuación).

Proyectando sobre *XZ*. $R_{xz} = R_1 + R_2$. La curva C_1 que divide ambas regiones es la cruva de intersección entre y = 2 - 2z y $y = 2 - 2x^2$. Igualdando obtenemos $C: z = x^2$. La curva C_2 se obtiene como la intersección de $y = 1 - x^2$ y y = 2 - 2z. Entonces $C_2: z = (1 + x^2)/2$. $C_1: z = x^2$

$$V_{Q} = \int_{0}^{1} \int_{0}^{x^{2}} \left[\int_{1-x^{2}}^{2-2x^{2}} 1 \, dy \right] dz \, dx$$

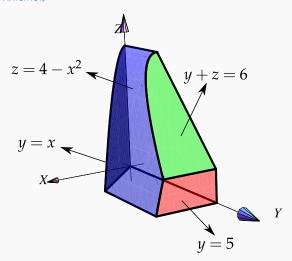
$$+ \int_{0}^{1} \int_{x^{2}}^{\frac{1}{2}(1+x^{2})} \left[\int_{1-x^{2}}^{2-2z} 1 \, dy \right] dz \, dx$$



Ejemplo 5.20

Considere el sólido Q limitado por $z = 4 - x^2$, y + z = 6, y = x, y = 5, z = 0 y x = 0, como se muestra en la figura. Usando integral triple, *plantear* la integrales necesarias para calcular el volumen de Q *proyectando en cada uno de los planos* XY, YZ y XZ

• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 5.20 (continuación).

Proyectando sobre el plano *XY*. La región de integración es $R_{xy} = R_1 + R_2 + R_3$.

La curva C divide las regiones R_1 y R_2 y la recta $x=\sqrt{3}$ divide la región R_1 y la región R_3 . La curva C es la proyección de la curva de intersección entre las superficies z+y=6 y $z=4-x^2$, es decir, $C:y=2+x^2$.

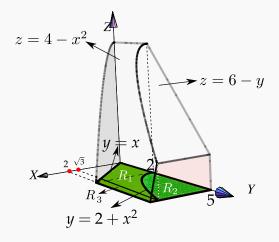
La región R_1 está entre y=x y $y=2+x^2$, la región R_2 está entre $y=2+x^2$ y y=5 y la región R_3 está entre y=x y y=5.

$$V_{Q} = \iint_{R_{1}} dV + \iint_{R_{2}} dV + \iint_{R_{3}} dV$$

$$= \int_{0}^{\sqrt{3}} \int_{x}^{2+x^{2}} \left[\int_{0}^{4-x^{2}} 1 dz \right] dy dx$$

$$+ \int_{0}^{\sqrt{3}} \int_{2+x^{2}}^{5} \left[\int_{0}^{6-y} 1 dz \right] dy dx$$

$$+ \int_{\sqrt{3}}^{2} \int_{x}^{5} \left[\int_{0}^{4-x^{2}} 1 dz \right] dy dx$$

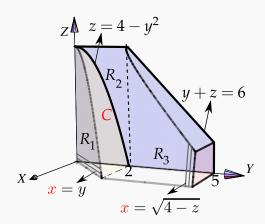


Proyectando sobre el plano *YZ*. La curva C es la proyección de la curva de intersección entre las superficies y = x y $z = 4 - x^2$, es decir, $C: z = 4 - y^2$.

$$V_{Q} = \int_{0}^{2} \int_{0}^{4-y^{2}} \left[\int_{0}^{y} 1 \, dx \right] dz \, dy$$

$$+ \int_{0}^{2} \int_{4-y^{2}}^{4} \left[\int_{0}^{\sqrt{4-z}} 1 \, dx \right] dz \, dy$$

$$+ \int_{2}^{5} \int_{0}^{6-y} \left[\int_{0}^{\sqrt{4-z}} 1 \, dx \right] dz \, dy$$

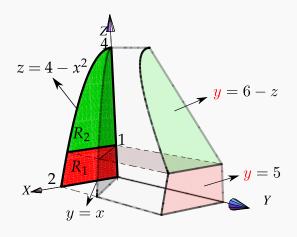


Ejemplo 5.20 (continuación).

Proyectando sobre el plano XZ.

$$V_{Q} = \int_{0}^{1} \int_{0}^{\sqrt{4-z}} \left[\int_{x}^{5} 1 \, dy \right] dx \, dz + \int_{1}^{4} \int_{0}^{\sqrt{4-z}} \left[\int_{x}^{6-z} 1 \, dy \right] dx \, dz$$

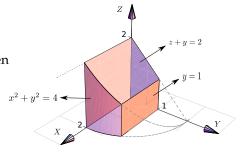
$$V_{Q} = \frac{68}{3} - \frac{12\sqrt{3}}{5}.$$



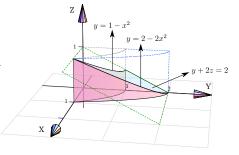
EJERCICIOS

• Hacer clic en la figura para ver en 3D (en Internet)

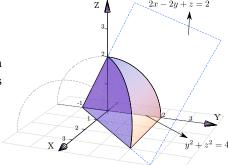
5.17 Plantear la o las integrales *triples* necesarias para calcular el volumen del sólido Q si este sólido está limitado por $x^2 + y^2 = 4$; z + y = 2; y = 1; x = 0; y = 0 y z = 0, en el I octante



5.18 Plantear la o las integrales *triples* necesarias para calcular el volumen del sólido Q si este sólido está limitado por las superficies $y=2-2x^2$; $y=1-x^2$; y+2z=2; x=0 y z=0; en el I octante.



5.19 Plantear la o las integrales *triples* necesarias para calcular el volumen sólido Q si este sólido está limitado por la superficie $y^2 + z^2 = 4$ y los planos 2x - 2y + z = 2; x = 0 y z = 0.



5.6 Cambio de variables en integral triple.

La versión del teorema de cambio de variable para integrales triples es la siguiente,

Teorema 5.4 (Cambio de variable).

Sea Q una región acotada en \mathbb{R}^3 cuya frontera consiste de un número finito de superficies suaves. Suponga-mos que Q está contenido en un conjunto abierto U y sea L(u,v,w)=(x(u,v,w),y(u,v,w),z(u,v,w)) un cambio de variable de U en \mathbb{R}^3 invertible en el interior de Q y con derivadas parciales continuas. Sea f una función continua

y acotada sobre
$$L(Q)$$
 y sea $J(u,v,w) = \mathbf{Det} \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{pmatrix}$ no nulo en el interior de Q , entonces

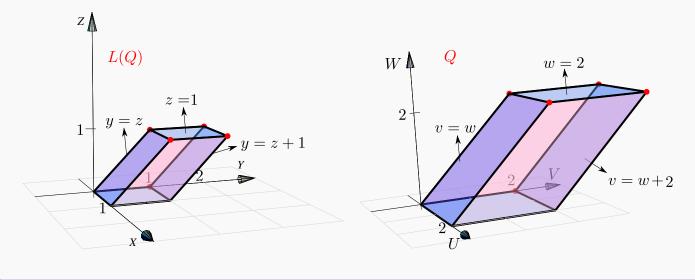
$$\iiint_{Q} f(L(u,v,w)) |J(u,v,u)| du \, dv \, dw = \iiint_{L(Q)} f(x,y,z) \, dx \, dy \, dz$$

Ejemplo 5.21 (Volumen de un Paralelepípedo).

Consideremos un paralelepípedo Q generado por los vectores A=(2,0,0), B=(0,2,2) y C=(0,2,0). Como se sabe del álgebra lineal, el volumen de Q es $V_Q=|\mathbf{Det}(A\ B\ C)|=8$. Si $L:\mathbb{R}^3\to\mathbb{R}^3$ es una transformación lineal, entonces el paralelepípedo generado por L(A),L(B) y L(C), el cual denotamos con L(Q), tiene volumen

$$V_{L(Q)} = \left| \mathbf{Det}(L) \right| V_Q \ = \ \left| \mathbf{Det}(L) \right| \cdot 8.$$

Verifiquemos en este caso el teorema de cambio de variable aplicando al sólido Q de la figura, la transformación lineal L(u,v,w)=(u/2,v/2w/2).



Ejemplo 5.21 (continuación).

$$V_{L(Q)} = \int_0^1 \int_z^{z+1} \int_0^1 1 \cdot dx \, dy \, dz = 1$$
 y $V_Q = \int_0^2 \int_w^{w+2} \int_0^2 1 \, du \, dv \, dw = 8$

Ahora, com una verificación, calculamos $V_{L(Q)}$ aplicando un cambio de variable. Sea x=u/2, y=v/2, z=w/2 sobre Q, obtenemos el nuevo sólido L(Q). En este caso,

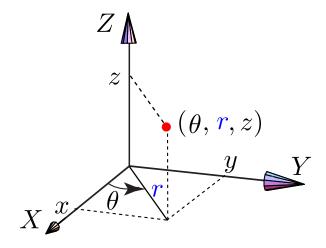
$$J(u,v,w) = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/2 \end{pmatrix} = \frac{1}{8},$$

y entonces, por el teorema de cambio de variable,

$$V_{L(Q)} = \iint_{R_{vw}} \left[\int_0^2 1 \cdot |J(u, v, w)| \, dw \right] \, du \, dv$$
$$= \int_0^2 \int_w^{w+2} \left[\int_0^2 1 \cdot \left| \frac{1}{8} \right| \, dw \right] \, du \, dv = \frac{1}{8} \cdot 8 = 1.$$

5.7 Coordenadas cilíndricas.

Las coordenadas cilíndricas se usan para describir regiones que son simétricas respecto a alguno de los ejes. La posición de un punto P(x,y,z) en el espacio está determinada por los números r,θ,z donde (r,θ) son las coordenadas polares del punto (x,y).



Si integramos proyectando sobre el plano XY, el cambio de variable es

$$r: \left\{ \begin{array}{lll} x & = & r\cos\theta \\ y & = & r\sin\theta, & \text{además} & |J(r,\theta,z)| = \left| \begin{pmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \right| = r \\ z & = & z \end{array} \right.$$

Como $J(r,\theta,z)=r$ entonces el cambio de variable es invertible si $r\neq 0$. Entonces, si se cumplen las condiciones del teorema de cambio de variable,

(Coordenadas Cilíndricas).

$$\iiint_{Q'} f(x,y,z) dV = \iiint_{Q} f(r\cos\theta, r\sin\theta, z) r dz dr d\theta$$

Ejemplo 5.22

Verifique que el volumen de un cilindro recto Q de radio a y altura h, es $V = \pi a^2 h$.

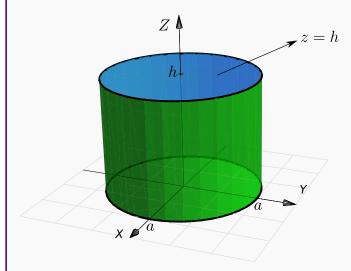
Solución: Q es el cilindro $x^2 + y^2 = a^2$ limitado por z = 0 y z = h. La proyección sobre el plano XY es el círculo $x^2 + y^2 = a^2$.

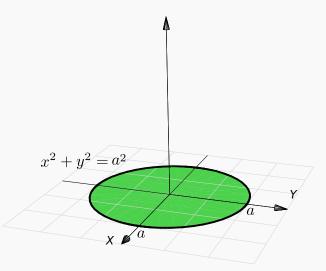
$$V = \iiint_{Q} dV$$

$$= \int_{0}^{2\pi} \int_{0}^{a} \left[\int_{0}^{h} r dz \right] dr d\theta$$

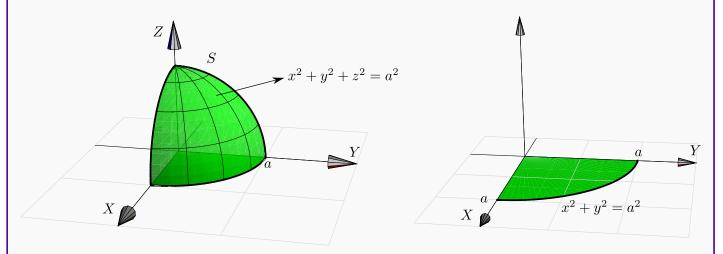
$$= \int_{0}^{2\pi} \int_{0}^{a} r h dr d\theta$$

$$= \int_{0}^{2\pi} \frac{a^{2}}{2} h d\theta = \frac{a^{2}}{2} h \theta \Big|_{0}^{2\pi} = \pi a^{2} h$$





Verifique que el volumen una esfera S de radio a tiene volumen $V = \frac{4}{3}\pi a^3$.



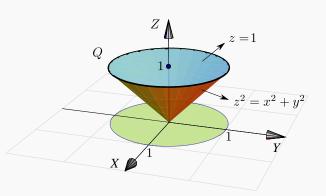
Solución: Podemos calcular el volumen de un octavo de esfera y multiplicar por 8 (ver figura). La esfera tiene ecuación $x^2+y^2+z^2=a^2$. Como la proyección es un círculo, usamos coordenadas cilíndricas: $x=r\cos\theta$, $y=r\sin\theta$ y z=z. La esfera está entre las superficies z=0 y $z=\sqrt{a^2-x^2-y^2}=\sqrt{a^2-r^2}$.

$$V = 8 \cdot \iiint_{Q} dV = 8 \cdot \int_{0}^{\pi/2} \int_{0}^{a} \left[\int_{0}^{\sqrt{a^{2} - r^{2}}} r dz \right] dr d\theta = 8 \cdot \int_{0}^{\pi/2} \int_{0}^{a} r \sqrt{a^{2} - r^{2}} dr d\theta$$
$$= 8 \cdot \int_{0}^{\pi/2} \frac{-\sqrt{(a^{2} - r^{2})^{3}}}{3} \bigg|_{0}^{a} d\theta = 8 \cdot \int_{0}^{\pi/2} \frac{a^{3}}{3} d\theta = \frac{8a^{3}}{3} \theta \bigg|_{0}^{\pi/2} = \frac{4}{3}a^{3}\pi$$

Ejemplo 5.24

Considere el sólido Q limitado por las superficies $z^2 = x^2 + y^2$ (cono), y el plano z = 1.

b.) Calcular el volumen de Q.



Ejemplo 5.24 (continuación).

Solución:

a.) En coordenadas rectangulares tendríamos

$$\iiint_{Q} 2z \, dV = \iint_{R} \left[\int_{\sqrt{x^{2} + y^{2}}}^{1} 2z \, dz \right] \, dy \, dx$$
$$= \int_{0}^{1} \int_{-\sqrt{1 - x^{2}}}^{\sqrt{1 - y^{2}}} \int_{\sqrt{x^{2} + y^{2}}}^{1} 2z \, dz \, dy \, dx$$

La región de integración se describe fácil si usamos coordenadas cilíndricas. La proyección R sobre el plano XY es un círculo de radio 1. En coordenadas polares esta región se describe como $R: 0 \le \theta \le 2\pi, 0 \le r \le 1$. Usando el cambio de variable $x = r\cos\theta, y = r\sin\theta$, entonces el sólido está entre las superficies z = r y z = 1.

$$\iiint_{Q} 2z \, dV = \int_{0}^{2\pi} \int_{0}^{1} \left[\int_{r}^{1} 2z \, dz \right] r \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} z^{2} \Big|_{r}^{1} r \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} r - r^{3} \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \frac{r^{2}}{2} - \frac{r^{4}}{4} \Big|_{0}^{1} \, d\theta$$

$$= \int_{0}^{2\pi} \frac{1}{4} \, d\theta = \frac{\pi}{2}.$$

b.) Volumen de Q.

$$\iiint_{Q} dV = \int_{0}^{2\pi} \int_{0}^{1} \left[\int_{r}^{1} dz \right] r dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} z |_{r}^{1} r dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} r - r^{2} dr d\theta$$

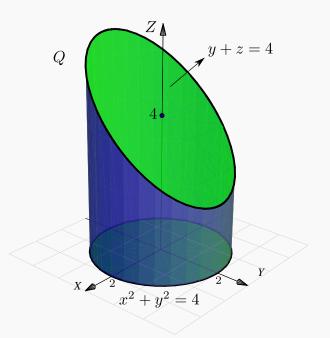
$$= \int_{0}^{2\pi} \frac{r^{2}}{2} - \frac{r^{3}}{3} \Big|_{0}^{1} d\theta$$

$$= \int_{0}^{2\pi} \frac{1}{6} d\theta = \frac{\pi}{3}.$$

El sólido Q de la figura esta limitado por el cilindro $x^2 + y^2 = 4$ y el plano y + z = 4. Calcular el volumen de Q.

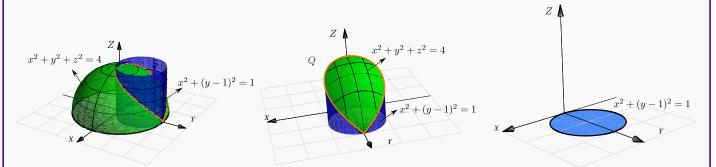
Solución: Usamos coordenadas cilíndricas: $x = r\cos\theta$, $y = r\sin\theta$ y z = z. Observemos que Q está entre las superficies z = 0 y $z = 4 - y = 4 - r\sin\theta$. La región de integración en el plano XY es el círculo $x^2 + y^2 = 4$, es decir el círculo r = 2 con $0 \le \theta \le 2\pi$.

$$V_Q = \iiint_Q dV = \int_0^{2\pi} \int_0^2 \left[\int_0^{4-r \sin \theta} r dz \right] dr d\theta$$
$$= \int_0^{2\pi} \int_0^2 r (4-r \sin \theta) dr d\theta$$
$$= \int_0^{2\pi} 8 - \frac{8 \sin \theta}{3} d\theta = 16\pi.$$



Ejemplo 5.26

Calcule el volumen del sólido de la figura. Este sólido Q está limitado por la esfera $x^2 + y^2 + z^2 = 4$ y el cilindro $x^2 + (y-1)^2 = 1$, $z \ge 0$.



Solución: El Sólido Q está entre las superficies z=0 y $z=\sqrt{4-x^2-y^2}=\sqrt{4-r^2}$. La proyección del solido es el círculo $x^2+(y-1)^2=1$. Este círculo se describe en coordenadas polares como

$$0 \le r \le 2 \operatorname{sen} \theta$$
, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ o también, $0 \le r \le 2 \operatorname{sen} \theta$, $0 \le \theta \le \pi$

El volumen de Q es,

$$\iiint_{Q} dV = \int_{-\pi/2}^{\pi/2} \int_{0}^{2 \operatorname{sen} \theta} \left[\int_{0}^{\sqrt{4-r^{2}}} dz \right] r dr d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \int_{0}^{2 \operatorname{sen} \theta} z r \Big|_{0}^{\sqrt{4-r^{2}}} dr d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \int_{0}^{2 \operatorname{sen} \theta} r \sqrt{4-r^{2}} dr d\theta$$

$$= \int_{-\pi/2}^{\pi/2} -\frac{1}{3} (4-r^{2})^{3/2} \Big|_{0}^{2 \operatorname{sen} \theta} d\theta$$

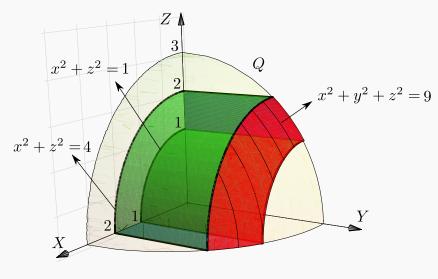
$$= -\frac{1}{3} \int_{-\pi/2}^{\pi/2} (4-4 \operatorname{sen}^{2} \theta)^{3/2} - 8 d\theta$$

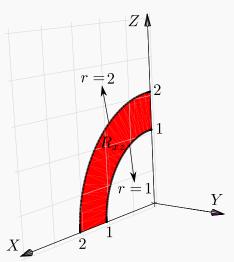
$$= -\frac{1}{3} \int_{-\pi/2}^{\pi/2} 8 \cos^{3} \theta - 8 d\theta = -\frac{8}{3} (4/3 - \pi).$$

Aquí se usó la integral $\int \cos^3 t \, dt = \frac{3\sin(t)}{4} + \frac{\sin(3t)}{12}$.

Ejemplo 5.27

Calcule el volumen de sólido Q, mostrado en la figura, el cual está limitado por la esfera $x^2 + y^2 + z^2 = 3^2$ y los cilindros $x^2 + z^2 = 2^2$, $x^2 + z^2 = 1^2$.





Ejemplo 5.27 (continuación).

Solución: La proyección sobre XZ es una región entre un par de segmentos de círculo. Usamos coordenadas cilíndricas, el cambio de variable sería \mathbf{r} : $\begin{cases} x = r\cos\theta \\ z = r\sin\theta \quad \text{y como antes, } J(r,\theta,y) = r. \\ y = y \end{cases}$

La proyección R_{xz} está entre las circunferencias r=1 y r=2 y el ángulo $0 \le \theta \le \pi/2$. El sólido Q está entre y=0 y $y=\sqrt{3^2-x^2-z^2}=\sqrt{3^2-r^2}$.

$$V_{Q} = \int_{0}^{\pi/2} \int_{1}^{2} \left[\int_{0}^{\sqrt{9-r^{2}}} 1 \cdot dy \right] r dr d\theta$$

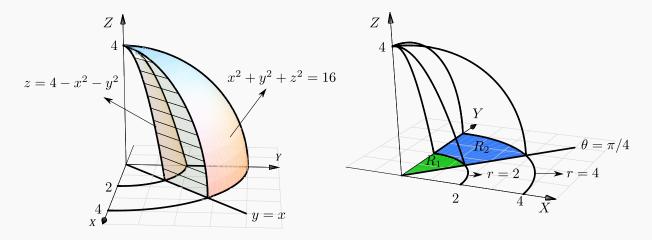
$$= \int_{0}^{\pi/2} \int_{1}^{2} \left[y \Big|_{0}^{\sqrt{9-r^{2}}} \right] r dr d\theta$$

$$= \int_{0}^{\pi/2} \int_{1}^{2} r \sqrt{9-r^{2}} dr d\theta, \quad \text{hacemos } u = 9 - r^{2}, \ du = -2r dr,$$

$$= \int_{0}^{\pi/2} -\frac{1}{3} \left(9 - r^{2} \right)^{3/2} \Big|_{9-1^{2}}^{9-2^{2}} d\theta = \frac{\pi}{6} \left(16\sqrt{2} - 5\sqrt{5} \right).$$

Ejemplo 5.28

Calcule, usando coordenadas cilíndricas, el volumen del sólido Q, limitado por la porción de paraboloide $z = 4 - x^2 - y^2$, la porción de esfera $x^2 + y^2 + z^2 = 16$ y el plano x = y; en el primer octante (figura).



Solución: La región e integración, proyectando sobre XY, es $R = R_1 \cup R_2$.

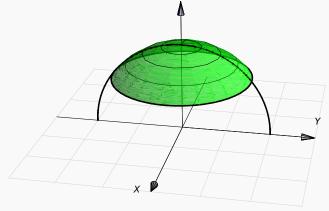
Ejemplo 5.28 (continuación).

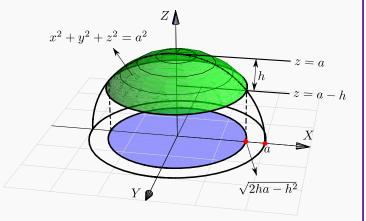
- $R_1: 0 \le r \le 2, \ \pi/4 \le \theta \le \pi/2,$
- $R_2: 2 \le r \le 4, \ \pi/4 \le \theta \le \pi/2.$
- En la región R_1 , el sólido está entre la porción de esfera $x^2 + y^2 + z^2 = 16$ y la porción de paraboloide $z = 4 x^2 y^2$.
- En la región R_2 , el sólido está entre la porción de esfera $x^2 + y^2 + z^2 = 16$ y el plano z = 0.

$$\begin{split} V_Q &= \iiint_Q dV = \int_{\pi/4}^{\pi/2} \int_0^2 \left[\int_{4-r^2}^{\sqrt{16-r^2}} r \, dz \right] dr \, d\theta \, + \int_{\pi/4}^{\pi/2} \int_2^4 \int_0^{\sqrt{16-r^2}} r \, dz \, dr \, d\theta \\ &= \int_{\pi/4}^{\pi/2} \int_0^2 r \sqrt{16-r^2} - r(4-r^2) \, dr \, d\theta \, + \int_{\pi/4}^{\pi/2} \int_2^4 r \sqrt{16-r^2} \, dr \, d\theta \\ &= \int_{\pi/4}^{\pi/2} -\frac{1}{3} (16-r^2)^{3/2} - 2r^2 + \frac{r^4}{4} \Big|_0^2 d\theta \, + \int_{\pi/4}^{\pi/2} -\frac{1}{3} (16-r^2)^{3/2} \Big|_2^4 d\theta \\ &= \int_{\pi/4}^{\pi/2} -\frac{1}{3} (16-r^2)^{3/2} - 2r^2 + \frac{r^4}{4} \Big|_0^2 d\theta \, + \int_{\pi/4}^{\pi/2} -\frac{1}{3} (16-r^2)^{3/2} \Big|_2^4 d\theta \\ &= \int_{\pi/4}^{\pi/2} \frac{52}{3} - 8\sqrt{3} \, d\theta \, + \int_{\pi/4}^{\pi/2} 8\sqrt{3} \, d\theta \, = \left(\frac{13}{3} - 2\sqrt{3} \right) \pi \, + 2\pi\sqrt{3} \, = \frac{13\pi}{3}. \end{split}$$

Ejemplo 5.29

El sólido Q de la figura es un casquete, de altura h, de una esfera de radio a.





Ejemplo 5.29 (continuación).

Vamos a usar coordenadas cilíndricas. Para calcular su volumen proyectamos sobre el plano XY. La proyección del casquete es un círculo de radio $\sqrt{2ha-h^2}$. Este radio se obtiene calculando la intersección de la curva $z^2+y^2=a^2$ y la recta z=a-h.

El sólido Q está limitado arriba por la superficie $z = \sqrt{a^2 - x^2 - y^2} = \sqrt{a^2 - r^2}$ y por abajo por la superficie z = a - h. Entonces

$$V_{Q} = \int_{0}^{2\pi} \int_{0}^{\sqrt{2ha - h^2}} \int_{r(a-h)}^{\sqrt{a^2 - r^2}} r dz dr d\theta$$

Como (usando "sustitución") $\int r\sqrt{a^2-r^2}\,dr=-\frac{1}{3}\,\sqrt{\left(a^2-r^2\right)^3}$ salvo constantes, se sigue que

$$V_Q = \int_0^{2\pi} \int_0^{\sqrt{2ha-h^2}} r \sqrt{a^2 - r^2} - r(a-h) dr d\theta$$

$$= \int_0^{2\pi} -\frac{1}{3} \sqrt{(a^2 - r^2)^3} - \frac{r^2(a-h)}{2} \Big|_0^{\sqrt{2ha-h^2}} d\theta$$

$$= \int_0^{2\pi} -\frac{1}{3} (a-r)^3 - \frac{(2ha-h^2)(a-h)}{2} + \frac{1}{3} a^3 d\theta$$

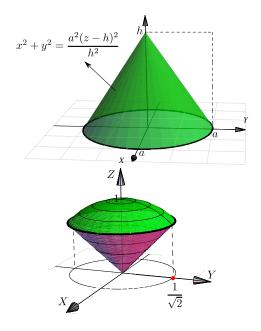
$$= \frac{\pi}{3} h^2 (3a-h)$$

EJERCICIOS

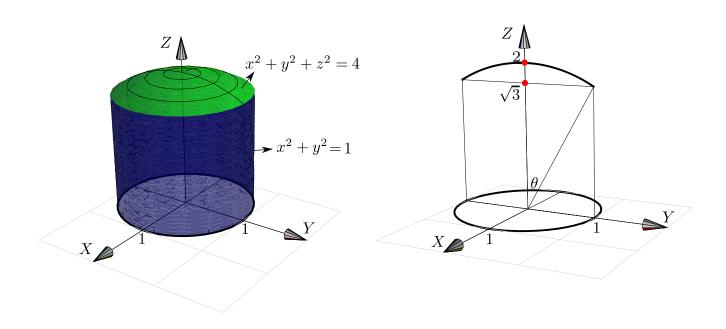
5.20 Verifique, que el volumen del cono de base circular de radio a y altura h es $V_C = \frac{\pi a^2 h}{3}$.

Ayuda: El cono se puede modelar con la ecuación $x^2+y^2=\frac{a^2(z-h)^2}{h^2}$, tal y como se muestra en la figura. El cono está entre z=0 y $z=h-\frac{h}{a}\sqrt{x^2+y^2}$ pues $z\leq h$.

5.21 Calcule el volumen del sólido Q limitado por el cono $z^2 = x^2 + y^2$ y la esfera $x^2 + y^2 + z^2 = 1$.



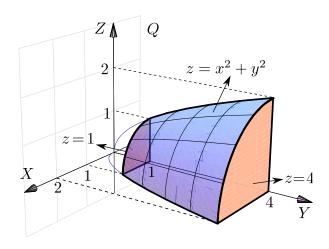
5.22 Calcule, usando coordenadas esféricas, el volumen del sólido Q limitado por un casquete de la esfera $x^2 + y^2 + z^2 = 4$ y el cilindro $x^2 + y^2 = 1$, como se muestra en la figura.

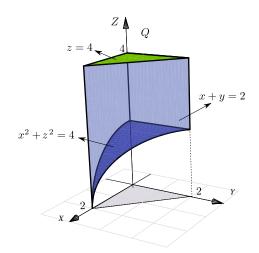


5.23 Sea
$$I = \iiint_{O} \sqrt{x^2 + y^2} dV = \int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{0}^{\sqrt{16-x^2-y^2}} \sqrt{x^2 + y^2} dz dy dx$$

- a) Dibuje el sólido Q. Observe que el sólido está entre las superficies $z^2 + x^2 + y^2 = 16$, $x^2 + y^2 = 4$, $x \in [0,2]$.
- **b)** Calcule *I* usando coordenadas cilíndricas.

5.24 Sea Q el sólido limitado por y=1, $y=x^2+z^2$ y y=4; como se muestra en la figura. Calcule $\iiint_Q \frac{1}{\sqrt{x^2+z^2}+1} dV$.

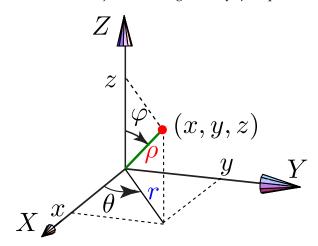




5.25 Calcule el volumen del sólido Q limitado por S_1 : $x^2 + z^2 = 4$, S_2 : y + x = 2, S_3 : z = 4, S_5 : y = 0, S_6 : x = 0.

5.8 Coordenadas esféricas.

En el caso de coordenadas esféricas, la posición de un punto P = (x,y,z) en el espacio está determinada por los números ρ, θ, φ donde ρ es la distancia del punto al origen, θ es la medida del ángulo de la proyección del punto en el plano XY con el eje X (llamado "longitud") y φ es la medida del ángulo entre el vector \vec{P} y el eje Z (llamado "latitud"). Est último ángulo se mide desde el eje Z. Los ángulos θ y φ se pueden tomar respecto a los otros ejes.



5.8.1 Describiendo Superficies en Coordenadas Esféricas.

En lo que sigue, φ lo tomaremos como aparece en la figura anterior. El cambo de variable de coordenadas rectangulares a coordenadas esféricas es

$$\left\{ \begin{array}{lcl} x & = & \rho \sin \varphi \cos \theta \\ y & = & \rho \sin \varphi \sin \theta \\ z & = & \rho \cos \varphi \end{array} \right. \qquad \cos \rho > 0, \;\; 0 \leq \theta < 2\pi, \;\; 0 \leq \varphi \leq \pi.$$

Observe que hay una relación entre coordenadas polares y esféricas: $\begin{cases} x = \rho \sin \varphi \cos \theta = r \cos \theta \\ y = \rho \sin \varphi \sin \theta = r \sin \theta \end{cases}$ A las coordenadas esféricas a veces se les llama "coordenada polares esféricas".

Ejemplo 5.30 (Semi-cono $z^2 = x^2 + y^2$ con $z \ge 0$)

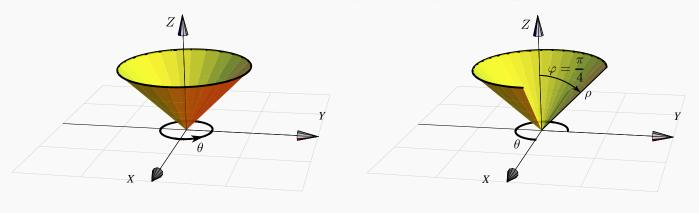
En la ecuación del cono $z^2=x^2+y^2$ hacemos la sustitución $x=\rho \sin \phi \cos \theta$, $y=\rho \sin \phi \sin \theta$, $z=\rho \cos \phi$ y obtenemos

$$\rho^2\cos^2\varphi = \rho^2\sin^2\varphi\cos^2\theta + \rho^2\sin^2\varphi\sin^2\theta \implies \cos^2(\varphi) = \sin^2(\varphi)$$

Podemos tomar la solución $\varphi = \frac{\pi}{4}$. Así, esta rama del cono se describe (en coordenadas esféricas) como

$$\varphi = \frac{\pi}{4}$$
, $0 \le \theta \le 2\pi$, $\rho > 0$.

Una parametrización de esta superficie es ${\pmb r}(\rho,\theta) = \left(\rho \sin\frac{\pi}{4}\cos\theta, \, \rho \sin\frac{\pi}{4}\sin\theta, \, \rho \cos\frac{\pi}{4} \right)$, con $0 \le \theta < 2\pi, \, \rho > 0$.

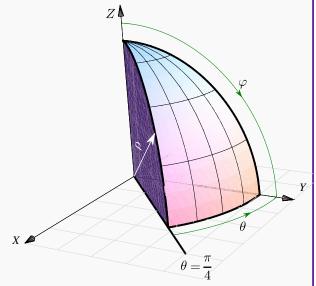


Ejemplo 5.31

Consideremos el sólido limitado por la esfera $x^2 + y^2 + z^2 = 1$ y el plano y = x, en el primer octante.

La esfera de radio 1 se describe en coordenadas esféricas por $\rho=1$ pues, haciendo la sustitución $x=\rho \sec \varphi \cos \theta$, $y=\rho \sec \varphi \sec \theta$, $z=\rho \cos \varphi$ en $x^2+y^2+z^2=1$ obtenemos $\rho=1$.

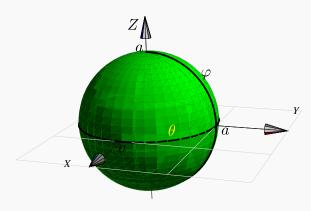
Este sólido se puede describir en coordenadas esféricas con $0 \le \rho \le 1$, $\pi/4 \le \theta \le \pi/2$ y $0 \le \varphi \le \pi/2$.



Ejemplo 5.32 (Superficie de la esfera $x^2 + y^2 + z^2 = a^2$).

Haciendo el cambio de variable y simplificando queda $\rho=a$. Luego, la esfera $x^2+y^2+z^2=a^2$ se describe (en coordenadas esféricas) como

$$\rho=a,\ 0\leq\theta\leq2\pi,\ 0\leq\varphi\leq\pi$$



Una parametrización de esta superficie es $r(\varphi,\theta)=(a \sec \varphi a \cos \theta, a \sec \varphi \sec \theta, \cos \varphi)$, con $0 \le \theta < 2\pi, 0 \le \varphi \le \pi$.

Ejemplo 5.33 (Superficie de la esfera $(x-1)^2 + y^2 + z^2 = 1$).

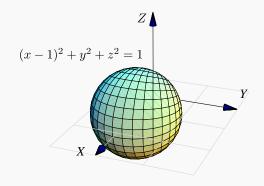
Para hacer la descripción de la esfera $(x-1)^2 + y^2 + z^2 = 1$ en coordenadas polares, hacemos el cambio de variable y, simplificando, queda $\rho = 2 \operatorname{sen} \varphi \cos \theta$. Luego, la esfera se describe (en coordenadas esféricas) como

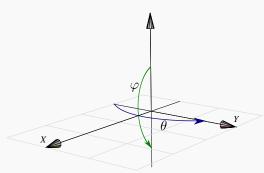
$$\rho = 2 \operatorname{sen} \varphi \cos \theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, 0 \le \varphi \le \pi$$

Una parametrización de esta esfera es

 $\boldsymbol{r}(\rho, \varphi, \theta) = (2 \operatorname{sen} \varphi \cos \theta \cdot \operatorname{sen} \varphi \cos \theta, \ 2 \operatorname{sen} \varphi \cos \theta \cdot \operatorname{sen} \varphi \sin \theta, \ 2 \operatorname{sen} \varphi \cos \theta \cdot \cos \varphi) \quad \operatorname{con} \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \ 0 \leq \varphi \leq \pi$

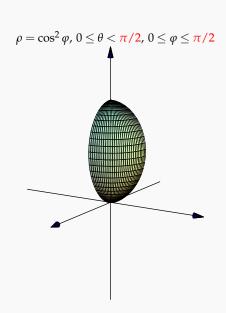
• Hacer clic en la figura para ver en 3D (en Internet)

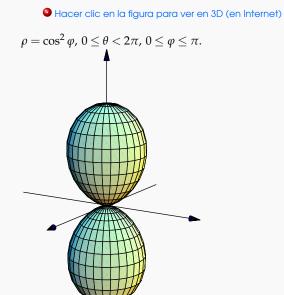




Ejemplo 5.34 (Superficie $S: (x^2 + y^2 + z^2)^3 = z^4$).

Para hacer la descripción de la superficie $(x^2+y^2+z^2)^3=z^4$ en coordenadas polares, hacemos el cambio de variable y simplificando queda $\rho=\cos^2\varphi$. Luego, la superficie se describe (en coordenadas esféricas) como $\rho=\cos^2\varphi$, $0\leq\theta<2\pi$, $0\leq\varphi\leq\pi$.





5.8.2 Cambio de variable con coordenadas esféricas.

En coordenadas esféricas ponemos u = r, $v = \theta$ y $w = \varphi$. Como dijimos antes, vamos a tomar el cambio de variable,

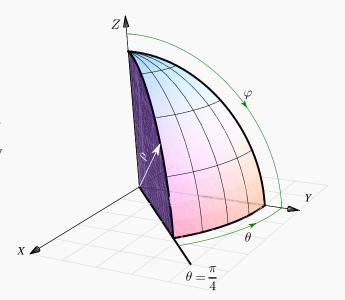
$$r:$$
 $\begin{cases} x = \rho \sin \varphi \cos \theta \\ y = \rho \sin \varphi \sin \theta & \text{en este caso} \quad |J(\rho, \varphi, \theta)| = \rho^2 \sin \varphi. \\ z = \rho \cos \varphi \end{cases}$

con $\rho > 0$, $0 \le \theta < 2\pi$, $0 \le \varphi \le \pi$. El interior de la región de integración requiere $\rho > 0$ y $\varphi \ne k\pi$, $k \in \mathbb{Z}$, para que el jacobiano no se anule. Si se cumplen las condiciones del teorema de cambio de variable, entonces

(Coordenadas Esféricas).

$$\iiint_{Q'} f(x,y,z) \, dV = \iiint_{Q} f(\rho\cos\varphi\cos\theta,\rho\cos\varphi\sin\theta,\rho\sin\varphi) \, \rho^{2} |\sin\varphi| \, d\rho \, d\theta \, d\varphi$$

Calcule, *usando coordenadas esféricas*, la integral $\iiint_Q z \, dV$ si Q es el sólido limitado por las superficies y = x y $x^2 + y^2 + z^2 = 1$; en el primer octante.



Solución: Haciendo el cambio de variable, $\rho = 1$, $\pi/4 \le \theta \le \pi/2$ y $0 \le \varphi \le \pi/2$. Luego,

$$\iiint_{Q} z dV = \int_{\pi/4}^{\pi/2} \int_{0}^{\pi/2} \int_{0}^{1} \rho \cos(\varphi) \cdot \rho^{2} \sin(\varphi) d\rho d\varphi d\theta$$

$$= \int_{\pi/4}^{\pi/2} \int_{0}^{\pi/2} \frac{\rho^{4}}{4} \cos(\varphi) \cdot \sin(\varphi) \Big|_{0}^{1} d\varphi d\theta$$

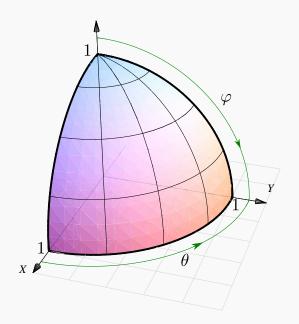
$$= \int_{\pi/4}^{\pi/2} \int_{0}^{\pi/2} \frac{1}{4} \cos(\varphi) \cdot \sin(\varphi) d\varphi d\theta$$

$$= \int_{\pi/4}^{\pi/2} \frac{1}{4} \frac{\sin^{2}(\varphi)}{2} \Big|_{0}^{\pi/2} d\theta$$

$$= \int_{\pi/4}^{\pi/2} \frac{1}{8} d\theta = \frac{\pi}{32}.$$

Calcular, usando coordenadas esféricas, el volumen de la esfera $Q: x^2 + y^2 + z^2 = 1$.

Solución: Vamos a calcular el volumen de un octavo de esfera. Aplicando el cambio de variable, $\rho=1, \ \pi/4 \le \theta \le \pi/2 \ y \ 0 \le \varphi \le \pi/2$. Notemos que $|\sec \varphi| = \sec \varphi$ en $[0,\pi/2]$.



$$\begin{split} V_{Q} &= 8 \cdot \iiint_{Q} dV \\ &= 8 \cdot \int_{0}^{\pi/2} \int_{0}^{\pi/2} \int_{0}^{1} \rho^{2} | \operatorname{sen} \varphi | \, d\rho \, d\theta \, d\varphi \\ &= 8 \cdot \int_{0}^{\pi/2} \int_{0}^{\pi/2} \frac{\rho^{3}}{3} \operatorname{sen} \varphi \Big|_{0}^{1} \, d\theta \, d\varphi \\ &= 8 \cdot \int_{0}^{\pi/2} \int_{0}^{\pi/2} \frac{\operatorname{sen} \varphi}{3} \, d\theta \, d\varphi = 8 \cdot \left(-\frac{\pi \cos \varphi}{6} \Big|_{0}^{\pi/2} \right) = \frac{4\pi}{3} \end{split}$$

Ejemplo 5.37

Calcular $\iiint_Q x^2 + y^2 dx dy dz$ donde Q es la esfera $(x-1)^2 + y^2 + z^2 = 1$.

Solución: Como ya vimos, esta esfera se puede describir, en coordenadas esféricas, como

$$\rho = 2 \operatorname{sen} \varphi \cos \theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, 0 \le \varphi \le \pi$$

Notemos además que $|\sin \varphi| = \sin \varphi$ en $[0, \pi]$. Luego

Ejemplo 5.37 (continuación).

$$\iiint_{Q} (x^{2} + y^{2}) dV = \int_{0}^{\pi} \int_{-\pi/2}^{\pi/2} \int_{0}^{2 \sin \varphi \cos \theta} (\rho^{2} \sin^{2} \varphi) \rho^{2} \sin \varphi d\rho d\theta d\varphi$$

$$= \int_{0}^{\pi} \int_{-\pi/2}^{\pi/2} \frac{32}{5} \cos^{5} \theta \sin^{8} \varphi d\theta d\varphi$$

$$= \int_{-\pi/2}^{\pi/2} \frac{32}{5} \cos^{5} \theta d\theta \cdot \int_{0}^{\pi} \sin^{8} \varphi d\varphi = \frac{512}{75} \cdot \frac{35\pi}{128} = \frac{28\pi}{15}.$$

Aquí usamos las integrales

Ejemplo 5.38

Calcular el volumen del sólido Q de ecuación $(x^2 + y^2 + z^2)^3 = z^4$ (ver figura).

Solución: Q se puede describir, en coordenadas esféricas, como

$$r = \cos^2 \varphi$$
, $0 \le \theta < 2\pi$, $0 \le \varphi \le \pi$

Notemos además que $| \operatorname{sen} \varphi | = \operatorname{sen} \varphi$ en $[0, \pi]$. Luego,

$$\iiint_{Q} dx dy dz = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\cos^{2} \varphi} r^{2} \operatorname{sen} \varphi dr d\theta d\varphi$$

$$= \int_{0}^{\pi} \int_{0}^{2\pi} \frac{\cos(\varphi)^{6} \sin(\varphi)}{3} d\theta d\varphi$$

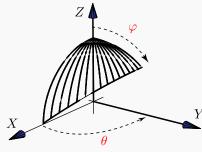
$$= \int_{0}^{\pi} \frac{2\pi \cos(\varphi)^{6} \sin(\varphi)}{3} d\varphi = -\frac{2\pi}{3} \frac{\cos(\varphi)^{7}}{7} \Big|_{0}^{\pi} = \frac{4\pi}{21}$$

Ejemplo 5.39 (Intercambio de ejes).

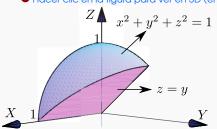
El sólido Q está limitado por las superficies y = z y $x^2 + y^2 + z^2 = 1$; en el primer octante.

Vamos a calcular $\iiint_{O} z dV$, usando coordenadas esféricas de tres maneras distintas (variando el orden de integración dx dy dz).

• La manera "complicada".



• Hacer clic en la figura para ver en 3D (en Internet)



En este caso φ varía entre 0 y el plano y=z. Entonces,

$$\rho \operatorname{sen} \varphi \operatorname{sen} \theta = \rho \operatorname{cos} \varphi \Longrightarrow \varphi = \arctan(\operatorname{csc}(\theta)).$$

Luego,
$$\varphi = \pi/2$$
 si $\theta = 0$ y $0 < \varphi \le \arctan(\csc(\theta))$

si
$$0 < \theta \le \pi/2$$
.

El cambio de variable sería

$$x = \rho \operatorname{sen} \varphi \cos \theta$$
,

$$y = \rho \operatorname{sen} \varphi \operatorname{sen} \theta, \quad |J| = \rho^2 \operatorname{sen}(\varphi).$$

$$z = \rho \cos \varphi$$
.

Como tenemos $\varphi = \varphi(\theta)$, integramos en el orden $d\varphi d\theta$. Debemos calcular (la integral impropia)

$$I = \int_0^{\pi/2} \int_0^{\arctan(\csc(\theta))} \int_0^1 \rho \cos(\varphi) \cdot \rho^2 \sin(\varphi) \, d\rho \, d\varphi \, d\theta$$

Aunque parece una integral complicada, en realidad no lo es. Solo debemos usar algunas identidades.

- $\bullet \phi = \arctan(x)$

- $cos(arctan(x)) = \frac{1}{\sqrt{x^2 + 1}}$ $sen(arctan(x)) = \frac{1}{\sqrt{x^2 + 1}}$ $cos^2(arctan(csc\theta)) = \frac{1}{csc^2\theta + 1}$, $\theta \in D = \mathbb{R} \{k\pi : k \in \mathbb{Z}\}$

Esta última identidad se obtiene poniendo $x = \csc\theta$ si $\csc\theta > 0$ (no debemos usar ϕ !). Si $\csc\theta < 0 \Longrightarrow -\csc\theta > 0$ y la identidad se obtiene usando las identidades $\arctan(-t) = -\arctan(t)$ (pues $\tan(-t) = -\tan t$) y $\cos(-t) = \cos(t)$.

El cálculo de la integral es como sigue,

Ejemplo 5.39 (continuación).

$$\begin{split} \int_0^{\pi/2} & \int_0^{\arctan(\csc(\theta))} \int_0^1 r \cos(\varphi) \cdot \rho^2 \operatorname{sen}(\varphi) \, d\rho \, d\varphi \, d\theta &= \int_0^{\pi/2} \frac{\rho^4}{4} \cos(\varphi) \cdot \operatorname{sen}(\varphi) \Big|_0^1 \, d\varphi \, d\theta \\ &= \int_0^{\pi/2} \frac{1}{4} \cos(\varphi) \cdot \operatorname{sen}(\varphi) \, d\varphi \, d\theta \\ &= \int_0^{\pi/2} -\frac{1}{8} \cos^2(\varphi) \Big|_0^{\arctan(\csc(\theta))} \, d\varphi \, d\theta \\ &= -\frac{1}{8} \int_0^{\pi/2} \frac{1}{\csc^2 \theta + 1} - 1 \, d\theta \\ &= \frac{1}{8} \int_0^{\pi/2} \frac{1}{\sec^2 \theta + 1} \, d\theta \end{split}$$

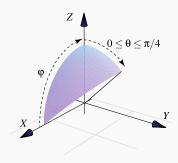
Hacemos el cambio
$$\theta = \arctan(t)$$
, $d\theta = \frac{1}{1+t^2}dt$.
$$\int \frac{1}{\left(\frac{t}{\sqrt{t^2+1}}\right)^2+1} \cdot \frac{1}{1+t^2}dt = \int \frac{1}{1+2t^2}dt$$

$$= \frac{\arctan(\sqrt{2}t)}{\sqrt{2}} + C = \frac{\arctan(\sqrt{2}\tan\theta)}{\sqrt{2}} + C$$
 Luego,
$$\int_0^{\pi/2} \int_0^{\arctan(\csc(\theta))} \int_0^1 r\cos(\varphi) \cdot r^2 \sin(\varphi) dr d\varphi d\theta = \lim_{\theta \to \frac{\pi}{2}^-} \frac{1}{8} \left(\frac{\arctan(\sqrt{2}\tan\theta)}{\sqrt{2}}\right) \Big|_0^\theta$$

$$= \frac{1}{8} \frac{\pi/2}{\sqrt{2}} = \frac{\pi}{16\sqrt{2}}$$

• La manera fácil: Simplificación con un intercambio de ejes.

El cambio de variable sería



$$z = \rho \operatorname{sen} \varphi \cos \theta,$$

 $y = \rho \operatorname{sen} \varphi \operatorname{sen} \theta, \quad |J| = \rho^2 \operatorname{sen}(\varphi).$
 $x = \rho \cos \varphi.$

$$\iiint_{Q} z \, dV = \int_{0}^{\pi/4} \int_{0}^{\pi/2} \int_{0}^{1} \underbrace{\rho \operatorname{sen}(\varphi) \cos(\theta)}_{0} \cdot \rho^{2} \operatorname{sen}(\varphi) \, d\rho \, d\varphi \, d\theta$$

$$= \int_{0}^{\pi/4} \int_{0}^{\pi/2} \frac{\rho^{4}}{4} \operatorname{sen}^{2}(\varphi) \cos(\theta) \Big|_{0}^{1} \, d\varphi \, d\theta$$

$$= \int_{0}^{\pi/4} \int_{0}^{\pi/2} \frac{1}{4} \operatorname{sen}^{2}(\varphi) \cos(\theta) \, d\varphi \, d\theta = \int_{0}^{\pi/4} \left(\frac{\theta}{2} - \frac{1}{4} \operatorname{sen}(2\theta) \right) \frac{\cos \theta}{4} \Big|_{0}^{\pi/2} \, d\theta$$

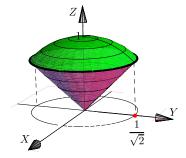
$$= \int_{0}^{\pi/4} \frac{\pi}{4} \frac{\cos \theta}{4} \, d\theta = \frac{\pi \operatorname{sen} \theta}{16} \Big|_{0}^{\pi/4} = \frac{\pi}{16\sqrt{2}}, \text{ pues } \operatorname{sen}(\pi/4) = \frac{1}{\sqrt{2}}.$$

EJERCICIOS

5.26 Sea *S* la esfera de radio 1 centrada en el origen. Verifique que

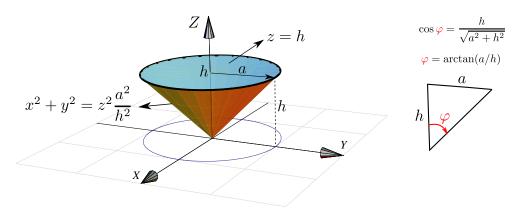
$$\iiint_{S} e^{\sqrt{(x^{2}+y^{2}+z^{2})^{3}}} dV = \frac{4}{3}\pi(e-1)$$

5.27 Calcule, usando coordenadas esféricas, el volumen del sólido Q limitado por el cono $z^2 = x^2 + y^2$ y la esfera $x^2 + y^2 + z^2 = 1$.



5.28 Verifique, usando coordenadas esféricas, que el volumen del cono de base circular de radio a y altura h es $V_C = \frac{\pi a^2 h}{3}$.

Ayuda: El cono se puede modelar con la ecuación $x^2 + y^2 = \frac{z^2 a^2}{h^2}$, tal y como se muestra en la figura.



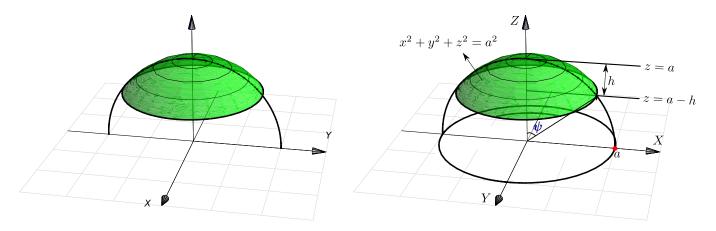
5.29 Use coordenadas esféricas para evaluar la integral

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \, dz \, dx \, dy$$

5.30 (Volumen de un casquete de esfera). El sólido Q está limitado por la esfera $x^2 + y^2 + z^2 = a^2$ y el plano z = h con 0 < h < a (el caso h = a corresponde a media esfera). Usando coordenadas esféricas, verifique que el volumen de Q es $V_Q = \frac{h^2\pi}{3}(3a - h)$.

Ayuda: Esta es una integral sencilla (aunque asusta). Como $\operatorname{sen}(\psi) = \frac{a-h}{a}$ (ver figura), entonces $\varphi = \frac{\pi}{2} - \operatorname{arcsen}\left(\frac{a-h}{a}\right)$. La integral simplifica totalmente, pues el recorrido de φ sería evaluado con $\cos\varphi$ y

$$\cos\left(\pi/2 - \arcsin\left(\frac{a-h}{a}\right)\right) = \sin\left(\arcsin\left(\frac{a-h}{a}\right)\right) = \frac{a-h}{a}.$$



5.9 Singularidades.

El método preferido para analizar el comportamiento de las funciones en sus singularidades es el paso al límite. Si f(x,y) es continua en una región R excepto en un punto (a,b) entonces definimos $R_{\epsilon}=R-B_{\epsilon}$ donde B_{ϵ} es un círculo de radio $\epsilon>0$ alrededor de (a,b). Si $\lim_{\epsilon\to 0}\iint_{R_{\epsilon}}f(x,y)\,dx\,dy$ existe, entonces

$$\iint_{R} f(x,y) dx dy = \lim_{\epsilon \to 0} \iint_{R_{\epsilon}} f(x,y) dx dy$$

Ejemplo 5.40

Calcular $\int_0^1 \int_0^1 \frac{x}{\sqrt{1-y^2}} \, dy \, dx.$

Solución: Tenemos una singularidad en y = 1. Entonces

$$\int_0^1 \int_0^1 \frac{x}{\sqrt{1 - y^2}} \, dy \, dx = \lim_{\epsilon \to 0} \int_0^1 \int_0^{1 - \epsilon} \frac{x}{\sqrt{1 - y^2}} \, dy \, dx$$

$$= \lim_{\epsilon \to 0} \int_0^1 x \operatorname{arcseny}|_0^{1 - \epsilon} \, dx$$

$$= \lim_{\epsilon \to 0} \int_0^1 x \operatorname{arcsen}(1 - \epsilon) \, dx$$

$$= \lim_{\epsilon \to 0} \frac{x^2}{2} \operatorname{arcsen}(1 - \epsilon) \Big|_0^1$$

$$= \lim_{\epsilon \to 0} \frac{1}{2} \operatorname{arcsen}(1 - \epsilon) = \frac{\pi}{4}.$$

Ejemplo 5.41

Sea R el rectángulo $[0,1] \times [0,1]$. Calcular $\iint_R \frac{1}{\sqrt{xy}} dx dy$.

Solución: Hay un problema en x = 0, y = 0.

$$\iint_{R} \frac{1}{\sqrt{xy}} dx dy = \lim_{\epsilon \to 0} \int_{\epsilon}^{1} \int_{\epsilon}^{1} \frac{1}{\sqrt{xy}} dy dx$$
$$= \lim_{\epsilon \to 0} 4(1 - \sqrt{\epsilon})^{2} = 4.$$

EJERCICIOS

5.31 Verifique que $\iint_R \frac{1}{\sqrt{x-y}} dx dy = \frac{8}{3}$ donde R es el rectángulo $[0,1] \times [0,1]$.

5.32 Verifique que $\iint_R \ln x \, dx \, dy = 2 - e$ donde $R = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le e^y, 0 \le y \le 1\}.$

Versión más reciente (y actualizaciones) de este libro:

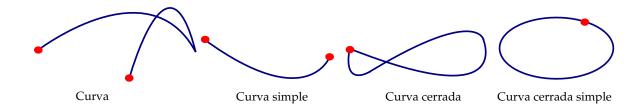
http://www.tec-digital.itcr.ac.cr/revistamatematica/Libros/http://dl.dropbox.com/u/57684129/revistamatematica/Libros/index.html

6.1 Curvas y parametrizaciones.

Definición 6.1

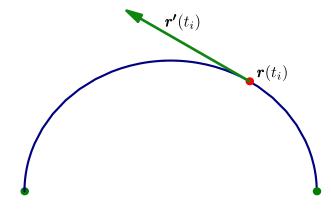
Consideremos la función vectorial continua $\mathbf{r}:[a,b] \longrightarrow \mathbb{R}^n$ con $\mathbf{r}(t)=(x_1(t),x_2(t),...,x_n(t))$. La imagen generada por \mathbf{r} se dice que es la *curva* C determinada por \mathbf{r} y que une los puntos $A=\mathbf{r}(a)$ y $B=\mathbf{r}(b)$.

- Si $\mathbf{r}(a) = \mathbf{r}(b)$, la curva se dice *cerrada*.
- Si r es inyectiva en [a,b], la curva se dice *simple*. Si r es cerrada y es inyectiva en [a,b], la curva se dice *cerrada simple*. Las curvas cerradas simples se llaman curvas de Jordan.
- A r le llamamos una parametrización de C.



La derivada de r se define de la manera usual

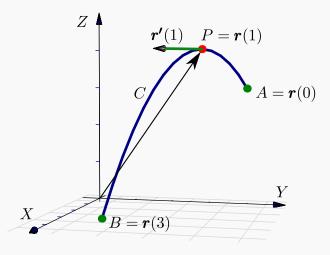
$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} = (x_1'(t), x_2'(t), ..., x_n'(t))$$



Consideremos la curva C parametrizada por $\mathbf{r}(t) = t \hat{\imath} + (4 - t) \hat{\jmath} + (4 - (t - 1)^2) \hat{k}$ con $t \in [0,3]$.

- $A = r(0) = (0, 4 0, 4 (0 1)^2) = (0, 4, 3) \text{ y } B = r(3) = (3, 4 3, 4 (3 1)^2) = (3, 1, 0).$
- $\mathbf{r}'(t) = \hat{\imath} 1\hat{\jmath} + -2(t-1)\hat{k}$. En particular, $\mathbf{r}'(1) = (1, -1, 0)$. En la figura se representa la traslación de este vector velocidad al punto $P = \mathbf{r}(1)$.

• Hacer clic en la figura para ver en 3D (en Internet)



Curvas regulares. Sea r(t) una parametrización de una curva C en el plano o en el espacio. El parámetro t podría ser tiempo, ángulo, longitud de arco, coordenada x, etc. Decimos que la curva C es regular o 'suave' en [a,b] si r'(t) es continua en [a,b] y $r'(t) \neq 0$ para todo $t \in [a,b]$ (es decir las componentes de r no se anulan simultáneamente). También decimos que una curva C es regular a trozos en [a,b] si es regular en cada subintervalo de alguna partición finita de [a,b].

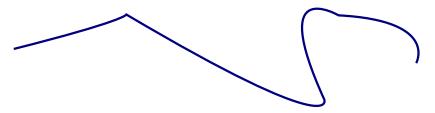


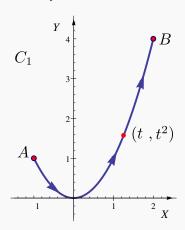
Figura 6.1: Curva regular a trozos

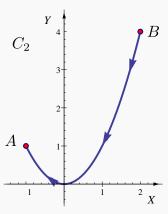
- En \mathbb{R}^2 escribimos $\mathbf{r}(t) = (x(t), y(t))$ o también $\mathbf{r}(t) = x(t) \hat{\imath} + y(t) \hat{\jmath}$, con $t \in [a, b]$
- ullet En \mathbb{R}^3 escribimos $m{r}(t) = (x(t), y(t), z(t))$ o también $m{r}(t) = x(t) \; \hat{m{\imath}} + y(t) \; \hat{m{\jmath}} + z(t) \; \hat{m{k}}$, con $t \in [a, b]$

 \bullet Una función vectorial es de clase C^1 si las derivadas de sus componentes son continuas.

Ejemplo 6.2 (Curvas Orientadas).

Consideremos las curvas C_1 y C_2





Ambas curvas tienen ecuación, en coordenadas rectangulares, $y = x^2$ con $x \in [-1,2]$. Pero C_1 inicia en A = (-1,1) y termina en B = (2,4); mientras que C_2 inicia en B y termina en A.

Para parametrizar cada curva debemos tomar en cuenta su orientación.

• Una parametrización de C_1 es (tomando a x = t como parámetro),

$$\mathbf{r}(t) = (x(t), y(t)) = (\underbrace{t}_{x(t)}, \underbrace{t^2}_{y(t)})$$
 o también $\mathbf{r}(t) = \underbrace{t}_{x(t)} \widehat{\imath} + \underbrace{t^2}_{y(t)} \widehat{\jmath}$ con $t \in [-1, 2]$.

Observe que $r(-1) = (x(-1), y(-1)) = (-1, (-1)^2) = A$ y $r(2) = (2, 2^2) = B$.

• Podemos parametrizar C_2 con x(t) = 2 - t y $y(t) = (2 - t)^2$, con $t \in [0,3]$. Así, r(0) = B y r(3) = A.

$$r(t) = (x(t), y(t)) = (2 - t, (2 - t)^2)$$
 o también $r(t) = (2 - t) \hat{\imath} + (2 - t)^2 \hat{\jmath}$ con $t \in [0, 3]$.

Observe que $\mathbf{r}(0) = (x(0), y(0)) = (2 - 0, (2 - 0)^2) = B \text{ y } \mathbf{r}(3) = (3 - 2, (3 - 2)^2) = A.$

(Parametrizar una elipse).

Una elipse de ecuación $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ se puede parametrizar con

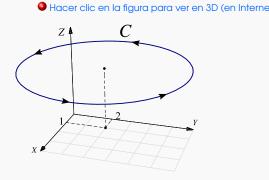
$$\mathbf{r}(t) = (h + a\cos t)\,\hat{\imath} + (k + b\sin t)\,\hat{\jmath}$$
 con $t \in [0, 2\pi[$.

En este caso no se toma en cuenta la orientación de la curva aunque esta parametrización corresponde a una orientación contra-reloj.

Ejemplo 6.3

Sea C la curva de ecuación $(x-1)^2+(y-2)^2=16$; z=3. Se trata de una circunferencia, es decir, un caso particular de elipse. Una parametrización es

$$r(t) = (1 + 4\cos(t)) \hat{\imath} + (2 + 4\sin(t)) \hat{\jmath} + 3 \hat{k}, \ t \in [0, 2\pi[$$



Segmentos de recta. Sean $A, B \in \mathbb{R}^3$. El segmento de recta que va de A hasta B se puede parametrizar con

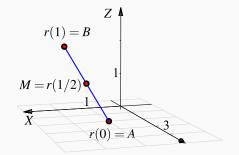
$$r(t) = A + t(B - A)$$
 con $t \in [0,1]$.

El punto inicial es $r(0) = A + 0 \cdot (B - A) = A$; el punto final es $r(1) = A + 1 \cdot (B - A) = B$ y el punto medio es $r(1/2) = A + \frac{1}{2} \cdot (B - A) = \frac{A + B}{2}$.

Ejemplo 6.4

El segmento C_1 que va de A = (1,2,0) hasta B = (2,1,2) se puede parametrizar con

$$r(t) = A + t(B - A) = (1 + t, 2 - t, 2t)$$
 con $t \in [0,1]$.



Considere la curva $C = C_1 + C_2 + C_3$. Parametrizar C.

Solución:

• C_1 es un segmento de recta sobre el eje Y por tanto x(t) = 0 y z(t) = 0. Una parametrización es

$$r_1(t) = (0, t, 0) \text{ con } t \in [0,3].$$

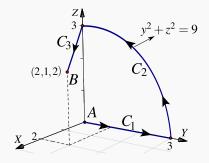
• C_2 es un cuarto de circunferencia de radio 3, en el plano YZ. Lo podemos parametrizar con

$$r_2(t) = (0, 3\cos t, 3\sin t) \text{ con } t \in [0, \pi/2].$$

• C_3 es un segmento de recta que va de (2,1,2) hasta (0,0,3). Podemos parametrizar con

$$r_3(t) = (2,1,2) + t[(0,0,3) - (2,1,2)]$$

= $(2-2t, 1-t, 2+2t)$ con $t \in [0,1]$



Ejemplo 6.6

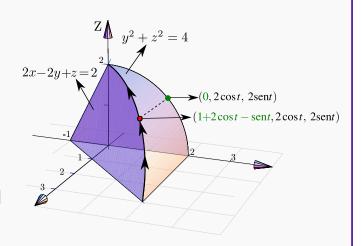
Considere la curva C de intersección entre el plano 2x - 2y + z = 2 y el cilindro $y^2 + z^2 = 4$. Determine una parametrización para C.

Solución: Los puntos de C son puntos (x(t), y(t), z(t)) en donde y(t) y z(t) están en la circunferencia $y^2 + z^2 = 4$, es decir, podemos poner $y(t) = 2\cos t$ y $z(t) = 2\sin t$.

Como x(t) está en el plano 2x - 2y + z = 2, despejando: x(t) = 1 - z(t)/2 + y(t), ahora podemos escribir

$$C: r(t) = (1 + 2\cos t - \sin t, 2\cos t, 2\sin t) \text{ con } t \in [0, \pi/2]$$

Observe que r(0) = (3, 2, 0) y $r(\pi/2) = (0, 0, 2)$.



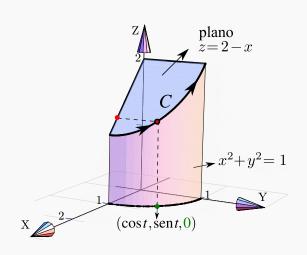
Considere la curva C de intersección entre el cilindro $x^2 + y^2 = 1$ y el plano z = 2 - x. Parametrizar C.

Solución: Hay varias maneras de parametrizar *C*. Veamos dos maneras.

Primera manera: Los puntos de *C* son puntos (x(t), y(t), z(t)) con x(t) y y(t) sobre la circunferencia $x^2 + y^2 = 1$, por lo tanto podemos poner $x(t) = \cos t$ y $y(t) = \sin t$. Como z(t) está en el plano z = 2 - x, entonces z(t) = 2 - x(t). Una parametrización podría ser

$$C: r(t) = (\cos t, \sin t, 2 - \cos t) \text{ con } t \in [0, \pi/2]$$

Observe que r(0) = (1,0,1) y que $r(\pi/2) = (0,1,2)$.



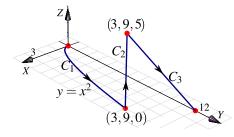
• Segunda manera: Ver los puntos de C con x(t) y z(t) sobre la recta z=2-x y y(t) en el el cilindro $x^2+y^2=1$. Una parametrización se podría obtener tomando a x=t como paramétro:

$$-C: r(t) = (t, \sqrt{1-t^2}, 2-t) \text{ con } t \in [0,1]$$

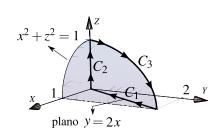
La parametrización invierte la orientación, eso lo indicamos con "-C".

EJERCICIOS

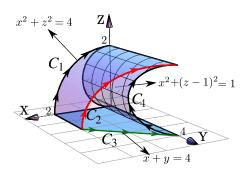
6.1 Parametrizar cada una de las curvas C_1 , C_2 y C_3 .



6.2 Parametrizar cada una de las curvas C_1 , C_2 y C_3 .



6.3 Parametrizar cada una de las curvas C_1 , C_2 , C_3 y C_4



6.2 Campos escalares y campos vectoriales.

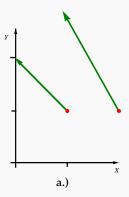
Definición 6.2

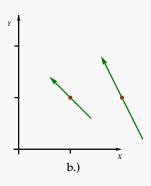
Sea $U \subseteq \mathbb{R}^n$ un conjunto abierto. Una aplicación $f: U \longrightarrow \mathbb{R}$ se denomina *campo escalar* o función escalar. Una función $f: U \longrightarrow \mathbb{R}^n$ se denomina *campo vectorial*.

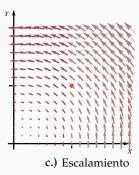
Ejemplo 6.8 (Representación gráfica).

Una manera de visualizar el campo gráficamente es anclar en cada punto (x,y) el respectivo vector F(x,y) (se traslada desde el origen). Pero también se puede anclar el vector de tal manera que el punto quede en el medio del vector (como si el vector fuera parte de una recta tangente). En general, la representación gráfica se hace anclando el vector de esta segunda manera y escalando el tamaño de los vectores de tal manera que unos no se sobrepongan sobre los otros, para tener una mejor vizualización de la dirección de "flujo" del campo vectorial. Así lo hace el software (como Wolfram Mathematica).

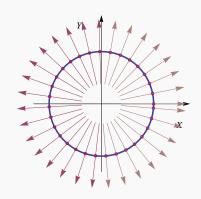
Por ejemplo, Consideremos el campo $\mathbf{F}(x,y) = (-y,x)$. En la figura **a.)** se dibujan dos vectores anclados en el punto, en la figura **b.)** se dibujan dos vectores anclados con el punto en el medio y en la figura **c.)** se hace la representación gráfica del campo escalando los vectores, tal y como se acostumbra.





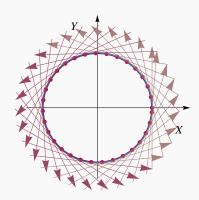


• Representación gráfica del campo vectorial F(x,y) =(2x, 2y) sobre la circunferencia $x^2 + y^2 = 1$. Observe que si $z = x^2 + y^2$ entonces $F(x,y) = \nabla z$, por eso los vectores son perpendiculares a esta circunferencia (la curva de nivel z = 1).



Ejemplo 6.10

• Representación gráfica, sobre la circunferencia $x^2 + y^2 = 1$, del campo vectorial $\mathbf{F}(x,y) = (-y,x)$.

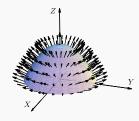


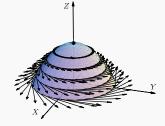
ullet Sea S_1 la superficie de ecuación $z=-x^2-y^2+1$. En la figura de abajo se presenta parte de la representación gráfica, sobre S, de los campos vectoriales

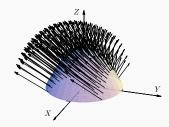
a.)
$$\mathbf{F}_1(x,y,z) = \frac{(2x,2y,1)}{3\sqrt{4x^2+4y^2+1}}$$
, **b.)** $\mathbf{F}_2(x,y,z) = (-y\sqrt{1-z},x\sqrt{1-z},0)$, **c.)** $\mathbf{F}_3(x,y,z) = (\cos(x),-\cos(y)\sin(x),\cos(y))$.

b.)
$$F_2(x,y,z) = (-y\sqrt{1-z}, x\sqrt{1-z}, 0),$$

c.)
$$F_3(x,y,z) = (\cos(x), -\cos(y)\sin(x), \cos(y))$$

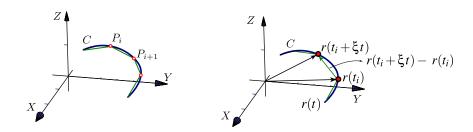






6.3 Longitud de una curva.

Consideremos una curva C regular y simple, parametrizada por \mathbf{r} en [a,b]. Para calcular la longitud de C, la idea es partir el intervalo [a,b] en n partes $[a,t_1] \cup [t_1,t_2] \cup ... \cup [t_{n-1},b]$ y considerar una línea poligonal inscrita en C como se muestra en la figura.



La longitud de la curva ("rectificable") se define como el límite al cual tiende la suma de las longitudes de los segmentos de la línea poligonal cuando $||P|| = \text{Máx}(t_{i-1} - t_i) \longrightarrow 0$ si $n \longrightarrow \infty$, es decir

$$s = \lim_{n \to \infty} \sum_{i=1}^{n} || \mathbf{r}(t_i) - \mathbf{r}(t_{i-1}) ||$$

Si C es regular, por el teorema del valor medio podemos poner $||\mathbf{r}(t_i) - \mathbf{r}(t_{i-1})|| = ||\mathbf{r}'(\xi_i)(t_i - t_{i-1})||$ con $\xi_i \in]t_i, t_{i-1}[$ y concluir

$$\lim_{n\to\infty}\sum_{i=1}^n||\boldsymbol{r}'(\xi_i)\triangle t||=\int_a^b||\boldsymbol{r}'(t)||dt$$

Definición 6.3 (Longitud de una curva).

Sea C regular, simple y parametrizada por r(t), $t \in [a,b]$, entonces la longitud (de arco) de C es

$$s = \int_C ||\boldsymbol{r}'(t)|| dt$$

Sea C parametrizada por $\mathbf{r}(t)$.

Si
$$\mathbf{r}(t) = x(t) \hat{\mathbf{i}} + y(t) \hat{\mathbf{j}}$$
 con $t \in [a, b]$ entonces

$$s = \int_C ||\mathbf{r}'(t)|| dt = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

Si y = f(x) entonces tomando x = t tenemos

$$s = \int_C ||\mathbf{r}'(t)|| dt = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

Calcular la longitud de la circunferencia de un círculo de radio a.

Solución: La circunferencia se puede parametrizar con $r(t) = a\cos(t)\hat{\imath} + a\sin(t)\hat{\jmath}$ con $t \in [0,2\pi[$.

$$s = \int_C ||r'(t)|| dt = \int_0^{2\pi} \sqrt{(a \operatorname{sen}(t))^2 + (a \cos(t))^2} dt = \int_0^{2\pi} a dt = 2a\pi$$

Ejemplo 6.12

Calcular la longitud de la la hélice $x(t) = 2\cos(t)$, $y(t) = 2\sin(t)$, z(t) = t/4 con $t \in [0, 2\pi]$.

Solución:

$$\int_C ||r'(t)|| dt = \int_0^{2\pi} \sqrt{4 \operatorname{sen}^2(t) + 4 \operatorname{cos}^2(t) + \frac{1}{16}} dt$$
$$= \int_0^{2\pi} \sqrt{\frac{65}{16}} dt = 2\pi \sqrt{\frac{65}{16}}.$$

6.4 Integral de línea para campos escalares.

Masa de un alambre. Consideremos un trozo de alambre delgado cuya masa varía continuamente y tiene valor $\rho(\mathbf{x})$ gramos por centímetro en el punto \mathbf{x} sobre C. Para estimar la masa total sobre C, hacemos una partición de C: $\{\mathbf{r}(t_0),\mathbf{r}(t_1),...,\mathbf{r}(t_{k+1})\}$ donde \mathbf{r} es una parametrización de C. Si $\Delta s_i = ||\mathbf{r}(t_{i+1}) - \mathbf{r}(t_i)||$ centímetros, la masa del segemento que va de $\mathbf{r}(t_{i+1})$ a $\mathbf{r}(t_i)$ es aproximadamente $\rho(\mathbf{r}(t_i))\Delta s_i$ gramos y la masa total s del alambre sería

$$s \approx \sum_{i=1}^{k} \rho(\mathbf{r}(t_i)) \Delta s_i$$

Esta es una suma de Riemman y por tanto podemos tomar el límite: $s = \int_{\mathcal{C}} \rho(\boldsymbol{x}) \, ds$

Definición 6.4

Sea $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ continua y C una curva suave y simple, contenida en U y parametrizada por r(t) con $t \in [a,b]$, entonces *la integral de línea* de f sobre C es

$$\int_{C} f \, ds = \int_{a}^{b} f(\boldsymbol{r}(t)) ||\boldsymbol{r}'(t)|| \, dt$$

Ejemplo 6.13

Sea C el segmento de recta x = y con $x \in [1,2]$. Calcular $\int_C \frac{1}{2x - y} ds$

Solución: Usemos la parametrización $\mathbf{r}(t) = (t,t)$ con $t \in [1,2]$. Como $||\mathbf{r}'(t)|| = \sqrt{2}$, entonces

$$\int_C \frac{1}{2x - y} \frac{ds}{ds} = \int_1^2 \frac{1}{2t - t} \frac{\sqrt{2}}{\sqrt{2}} dt = \int_1^2 \frac{\sqrt{2}}{t} dt = \sqrt{2} (\ln 2)$$

Ejemplo 6.14

Calcular $\int_C (x^2 + y^2)^5 ds$ con C la circunferencia $x(t) = 2\cos(t)$, $y(t) = 2\sin(t)$, $t \in [0, 2\pi]$.

Solución: Como $||r'(t)|| = ||4 \sin^2 t + 4 \cos^2 t|| = 2$, entonces

$$\int_C (x^2 + y^2)^5 \frac{ds}{ds} = \int_0^{2\pi} 4^5 \frac{2}{3} dt = 2 \cdot 4^5 \cdot 2\pi.$$

Ejemplo 6.15

Calcular $\int_C \frac{z^2}{x^2 + y^2} ds$ con C la espira (una vuelta) de la hélice $x(t) = 2\cos(t)$, $y(t) = 2\sin(t)$, z(t) = 2t.

Solución: Como $||\mathbf{r}'(t)|| = ||4 \sin^2 t + 4 \cos^2 t + 4|| = \sqrt{8}$, entonces

$$\int_C \frac{z^2}{x^2 + y^2} \, ds \, = \, \int_0^{2\pi} \frac{4t^2}{4} \, \sqrt{8} \, dt \, = \, \frac{16\sqrt{2}}{3} \, \pi^3.$$

6.5 (*)Longitud de arco en coordenadas polares.

Ahora el parámetro será θ . Si C esta dada por $r = r(\theta)$ con $\theta_1 \le \theta \le \theta_2$, entonces

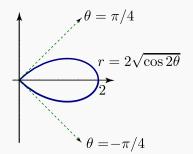
$$\left\{ \begin{array}{cccc} x(\theta) & = & r(\theta)\cos(\theta) & & x' & = & r'(\theta)\cos(\theta) - r(\theta)\sin(\theta) \\ & & \Longrightarrow & & & \\ y(\theta) & = & r(\theta)\sin(\theta) & & y' & = & r'(\theta)\sin(\theta) + r(\theta)\cos(\theta) \end{array} \right.$$

Luego, desarrollando y simplificando: $||(x',y')|| = \sqrt{(x')^2 + (y')^2} = \sqrt{(r'(\theta))^2 + r^2(\theta)}$. Así,

$$\int_C f \, ds = \int_{\theta_1}^{\theta_2} f(r(\theta) \cos(\theta), r(\theta) \sin(\theta)) \sqrt{[r'(\theta)]^2 + r^2(\theta)} \, d\theta$$

Ejemplo 6.16

Calcular $\int_C x\sqrt{x^2-y^2}\,ds$ con C la curva de ecuación $(x^2+y^2)^2=4(x^2-y^2),\ x\geq 0.$



Solución: Cambiando a polares la curva queda con ecuación $r=2\sqrt{\cos(2\theta)}$ donde $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$. Además

$$(x')^{2} + (y')^{2} = [r'(\theta)]^{2} + r^{2}(\theta) = \left(-\frac{2\sin(2\theta)}{\sqrt{\cos 2\theta}}\right)^{2} + \left(2\sqrt{\cos(2\theta)}\right)^{2} = \frac{4}{\cos 2\theta}$$

Ejemplo 6.16 (continuación).

$$\int_{C} x \sqrt{x^{2} - y^{2}} ds = \int_{-\pi/4}^{\pi/4} r \cos \theta \sqrt{r^{2} \cos^{2} \theta - r^{2} \sin^{2} \theta} \sqrt{\frac{4}{\cos(2\theta)}} d\theta$$

$$= 8 \int_{-\pi/4}^{\pi/4} \cos 2\theta \cos \theta d\theta \text{ (sustituyendo } r \text{ y simplificando)}.$$

$$= 8 \int_{-\pi/4}^{\pi/4} \cos \theta - 2 \sin^{2} \theta \cos \theta d\theta \text{ (sustituyendo } \cos 2\theta = \cos^{2} \theta - \sin^{2} \theta)$$

$$= \sin \theta - 2 \frac{\sin^{3} \theta}{3} \Big|_{-\pi/4}^{\pi/4} = \frac{16\sqrt{2}}{3}$$

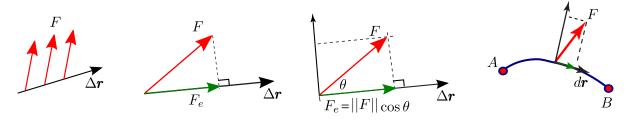
6.6 Trabajo como Integral de Línea.

Trabajo. Si una fuerza (empuje) *constante* F desplaza una partícula a lo largo de un vector Δr , el trabajo realizado por esta fuerza se define como el producto de la medida del desplazamiento por la componente F_e de la fuerza en la dirección de dicho desplazamiento (fuerza efectiva), es decir, el trabajo es

$$W = ||F_e||||\Delta r||$$

Si θ es la medida del ángulo formado por \mathbf{F} y $\Delta \mathbf{r}$ entonces el escalar $||F_e|| = ||\mathbf{F}|| \cos \theta$ es la componente de la fuerza en la dirección del movimiento⁵ (0 si $\theta = \pi/2$ y $||\mathbf{F}||$ si $\theta = 0$) y $||\Delta \mathbf{r}||$ la medida del desplazamiento. Luego el trabajo realizado es

$$W = ||\mathbf{F}|| ||\Delta \mathbf{r}|| \cos \theta = \mathbf{F} \cdot \Delta \mathbf{r}$$



Para calcular el trabajo sobre una curva C, se consideran pedazos muy pequeños de la curva, tan pequeños que son, aproximadamente, segmentos de recta y la fuerza es casi constante sobre estos pedazos de tamaño $||d\mathbf{r}||$. El trabajo hecho por \mathbf{F} para mover la partícula desde el inicio hasta el final de $d\mathbf{r}$ es $\mathbf{F} \cdot d\mathbf{r}$. Sumando todos los trabajos (pasando a la integral) obtenemos

 $^{{}^5}F$ se descompone como la suma de su componente ortogonal y su proyección ortogonal sobre Δr . Solamente la proyección ortogonal es la parte de F responsable del trabajo que se efectúa.

$$W = \int_C F \cdot d\mathbf{r}$$

Definición 6.5 (Trabajo).

Sea F un campo vectorial continuo sobre la curva C. Suponemos que C está orientada, es regular y simple. Entonces

$$W = \int_{C} F \cdot d\mathbf{r} = \lim_{\substack{k \to \infty \ ||M|| \to 0}} \sum_{i=1}^{k} \mathbf{F}(\mathbf{r}_{i}) \cdot \Delta \mathbf{r}_{i},$$

si el límite existe cuando es tomado sobre todas las particiones ordenadas $r(t_0), r(t_1), ... r(t_{k+1})$ de C con ||M|| = $\max_{i} \{ ||\Delta \mathbf{r}_{i}|| \} \text{ y } \Delta \mathbf{r}_{i} = \mathbf{r}(t_{i+1}) - \mathbf{r}(t_{i}), i = 1,...,k$

En la definición anterior, C puede ser regular, cerrada y simple. En particular si C es la unión de curvas regulares y simples $C_1, C_2, ..., C_m$, escribimos $C = C_1 + C_2 + ... + C_m$ y definimos

$$\int_{C} F \cdot d\mathbf{r} = \int_{C_{1}} F \cdot d\mathbf{r} + \int_{C_{2}} F \cdot d\mathbf{r} + \cdots + \int_{C_{n}} F \cdot d\mathbf{r}$$

• El vector unitario tangente es $T = \frac{r'(t)}{||r'(t)||}$ y $d\mathbf{r} = (dx_1(t), dx_2(t), ..., dx_n(t)) = (x_1'(t)dt, x_2'(t)dt, ..., x_n'(t)dt)$. Si C esta parametrizada por r(s) (usando la longitud de arco s como parámetro) con $0 \le s \le \ell$, entonces como $d\mathbf{r} = \mathbf{r}'(t) dt = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||} ||\mathbf{r}'(t)|| dt = \mathbf{T} ds$, tenemos

$$\int_{C} F \cdot d\mathbf{r} = \int_{0}^{\ell} (F \cdot T) \, d\mathbf{s}$$

La función escalar $\mathbf{F} \cdot \mathbf{T}$ puede tener discontinuidades de primera espacie ligadas a algún punto esquina de C.

• Si C está parametrizada por r(t) con $t \in [a,b]$, entonces

$$\int_{C} F \cdot d\mathbf{r} = \int_{a}^{b} (\mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||}) ||\mathbf{r}'(t)|| dt = \int_{a}^{b} (\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)) dt$$

Si
$$\mathbf{F}(x,y) = P(x,y) \, \hat{\mathbf{i}} + Q(x,y) \, \hat{\mathbf{j}}$$
 entonces
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt$$

$$= \int_a^b P \, dx + Q \, dy$$

$$= \int_a^b P(x(t), y(t)) \, \mathbf{x}'(t) \, dt + P(x(t), y(t)) \, \mathbf{y}'(t) \, dt$$

Si
$$\mathbf{F}(x,y,z) = P(x,y,z) \, \hat{\mathbf{i}} + Q(x,y,z) \, \hat{\mathbf{j}} + R(x,y,z) \, \hat{\mathbf{k}}$$
 entonces

$$\int_C F \cdot d\mathbf{r} = \int_a^b \mathbf{F}(r(t)) \cdot r'(t) \, dt$$

$$= \int_a^b P \, dx + Q \, dy + R \, dz$$

$$= \int_a^b P(x(t),y(t),z(t)) \, x'(t) \, dt + Q(x(t),y(t),z(t)) \, y'(t) \, dt$$

$$+ R(x(t),y(t),z(t)) \, z'(t) \, dt$$

• Cuando una curva C es parametrizada por r(t) con $t \in [a,b]$, entonces inducimos una orientación en C. Distintas parametrizaciones pueden inducir distintas orientaciones.

Por ejemplo, en la figura se tiene la curva $y = 2\operatorname{sen}(x)$ con $x \in [0,3]$. Dos parametrizaciones que inducen orientaciones opuestas son $r_1(t) = (t, \operatorname{sen} t)$ y $r_2(t) = (3 - t, \operatorname{sen}(3 - t))$ ambas con $t \in [0,3]$.

Si $r_1(t)$ parametriza C en una dirección con vector tangente T y $r_2(t)$ parametriza C en sentido contrario, con vector tangente -T, entonces denotamos la segunda curva como -C y admitimos como válido que

$$\int_{-C} F \cdot d\mathbf{r} = -\int_{C} F \cdot d\mathbf{r}$$

- Más adelante, cuando veamos el teorema de Green, usaremos la siguiente noción de orientación: la curva cerrada C está orientada positivamente, respecto a una región D, si al movernos sobre C, la región siempre está a nuestra izquierda.
- Note que el trabajo W puede ser un número negativo. Esto ocurre cuando la fuerza actúa en contra del desplazamiento de la partícula.
- En la sección 6.16, la integral $\int_C F \cdot d\mathbf{r}$ se interpreta como "la suma" de las componentes de \mathbf{F} tangentes a la curva. Si C es cerrada, esta integral indica cómo \mathbf{F} tiende a circular alrededor de la curva. Esta interpretación es la que usamos para el teorema de Green.

Consideremos una fuerza constante $F(x,y) = 1\hat{\imath} + (0)\hat{\jmath}$. Calcule $\int_C F \cdot d\mathbf{r}$ si C el segmento de recta que se muestra en la figura.

Solución: La parametrización $\mathbf{r}(t) = t \hat{\imath} + 1 \hat{\jmath}$, $t \in [0,2]$, parametriza a "-C" pues $\mathbf{r}(0) = (0,1) = B$ y $\mathbf{r}(2) = (2,1) = A$.

En este caso, P(x,y) = 1, Q(x,y) = 0, x(t) = t y y(t) = 1.

$$\int_{C} F \cdot d\mathbf{r} = -\int_{-C} F \cdot d\mathbf{r}$$

$$= -\int_{C} (P(x(t), y(t)), Q(x(t), y(t))) \cdot (x'(t), y'(t)) dt$$

$$= -\int_{0}^{2} (1, 0) \cdot (1, 0) dt$$

$$= -\int_{0}^{2} 1 dt = -2$$



Ejemplo 6.18

Sea $F(x,y) = x\hat{\imath} + (x+y)\hat{\jmath}$. Calcule $\int_C F \cdot d\mathbf{r}$ si C es la curva de ecuación es $y = x^2$, $x \in [-1,2]$ tal y como se muestra en la figura.

Solución: La parametrización $r(t) = t\hat{\imath} + t^2\hat{\jmath}$, $t \in [-1,2]$, parametriza a "-C" pues r(-1) = (-1,1) = B y r(2) = (2,4) = A.

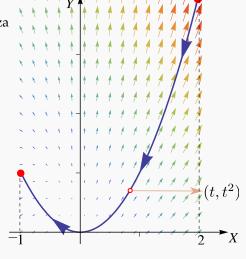
En este caso, P(x,y) = x, Q(x,y) = x + y, x(t) = t y $y(t) = t^2$.

$$\int_{C} F \cdot d\mathbf{r} = -\int_{-C} F \cdot d\mathbf{r}$$

$$= -\int_{C} (P(x(t), y(t)), Q(x(t), y(t))) \cdot (x'(t), y'(t)) dt$$

$$= -\int_{-1}^{2} (t, t + t^{2}) \cdot (1, 2t) dt$$

$$= -\int_{-1}^{2} t^{4} + 2t^{2} dt = -\frac{63}{5}$$



Calcular $\int_C y^2 dx + x^2 dy$ donde C es la elipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

Solución: El campo de fuerzas es $\mathbf{F}(x,y) = (y^2,x^2)$. Podemos usar la parametrización

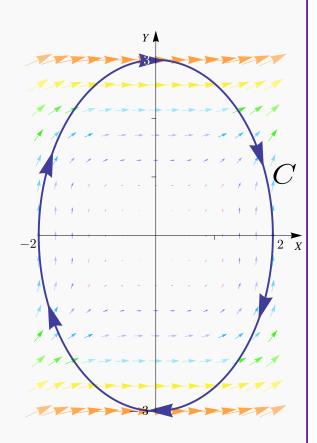
$$C: \mathbf{r}(\theta) = 2\cos\theta \,\hat{\mathbf{i}} + 3\sin\theta \,\hat{\mathbf{j}} \, \cos\theta \, \theta \in [0, 2\pi].$$

Entonces,

$$\int_{C} y^{2} dx + x^{2} dy = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$

$$= \int_{0}^{2\pi} (9 \operatorname{sen}^{2} \theta, 4 \cos^{2} \theta) \cdot (-2 \operatorname{sen} \theta, 3 \cos \theta) d\theta$$

$$= \int_{0}^{2\pi} -18 \operatorname{sen}^{3} \theta + 12 \cos^{3} \theta d\theta = 0$$



La integral anterior se calculó usando $\cos^3\theta = (1-\sin^2\theta)\cos\theta$.

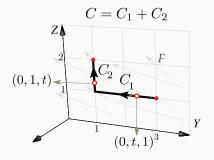
Ejemplo 6.20

Sea $\mathbf{F}(x,y,z) = 2x \ln(yz) \, \hat{\mathbf{i}} + \left(\frac{x^2}{y} - 5e^x\right) \, \hat{\mathbf{j}} + \left(\frac{x^2}{z} + 2z\right) \, \hat{\mathbf{k}}$ y sea C la curva de la figura. Calcular $\int_C F \cdot d\mathbf{r}$.

Solución:

$$\begin{cases}
-C_1: & \mathbf{r}_1(t) = (0, t, 1) \text{ con } t \in [1, 3], \\
C_2: & \mathbf{r}_2(t) = (0, 1, t) \text{ con } t \in [1, 2].
\end{cases}$$

• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 6.20 (continuación).

Luego

$$\int_{C} F \cdot d\mathbf{r} = \int_{C_{1}} F \cdot d\mathbf{r} + \int_{C_{2}} F \cdot d\mathbf{r} = -\int_{1}^{3} \mathbf{F}(\mathbf{r}_{1}(t)) \cdot \mathbf{r}_{1}'(t) dt + \int_{1}^{2} \mathbf{F}(\mathbf{r}_{2}(t)) \cdot \mathbf{r}_{2}'(t) dt$$

$$= -\int_{1}^{3} \mathbf{F}(0, t, 1) \cdot \mathbf{r}_{1}'(t) dt + \int_{1}^{2} \mathbf{F}(0, 1, t) \cdot \mathbf{r}_{2}'(t) dt$$

$$= -\int_{1}^{3} (0, -5, 2) \cdot (0, 1, 0) dt + \int_{1}^{2} (0, -5, 2t) \cdot (0, 0, 1) dt$$

$$= -\int_{1}^{3} [0 + (-5) \cdot 1 + 0] dt + \int_{1}^{2} [0 + 0 + (2t) \cdot 1] dt = 13$$

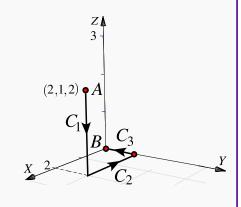
Ejemplo 6.21

Calcular $\int_C \mathbf{F} \cdot d\mathbf{r}$ si $C = C_1 + C_2 + C_3$, tal y como se muestra en la figura de la derecha.

Solución:

Una parametrización para C es

$$C = \begin{cases} -C_1 : r_1(t) = (2,1,t), t \in [0,2] \\ -C_2 : r_2(t) = (t,1,0), t \in [0,2] \\ -C_3 : r_3(t) = (0,t,0), t \in [0,1] \end{cases}$$



$$\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r} = -\int_{0}^{2} (t + \cos(2), 2t + 2\cos(2), 2) \cdot r_{1}'(t) dt - \int_{0}^{2} (\cos t, t \cos t, t) \cdot r_{2}'(t) dt - \int_{0}^{1} (t, 0, 0) \cdot r_{3}'(t) dt$$

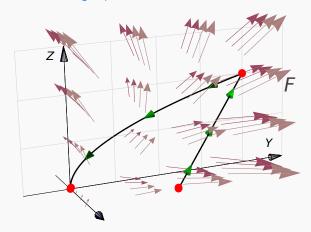
$$= -\int_{0}^{2} (t + \cos(2), 2t + 2\cos(2), 2) \cdot (0, 0, t) dt - \int_{0}^{2} (\cos t, t \cos t, t) \cdot (1, 0, 0) dt - \int_{0}^{1} (t, 0, 0) \cdot (0, 1, 0) dt$$

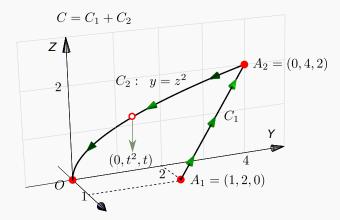
$$= -\int_{0}^{2} 2t dt - \int_{0}^{2} \cos t dt - 0$$

$$= -t^{2} \Big|_{0}^{2} - \sin t \Big|_{0}^{2} = -4 - \sin(2)$$

Sea $\mathbf{F}(x,y,z) = (x+y)\,\hat{\mathbf{i}} + (y-z)\,\hat{\mathbf{j}} + (x+z)\,\hat{\mathbf{k}}$ y sea C la curva de la figura. Calcular $\int_C F \cdot d\mathbf{r}$.

• Hacer clic en la figura para ver en 3D (en Internet)





Solución: Primero parametrizamos *C*.

 C_1 se puede parametrizar usando la fórmula para el segmento de recta que va desde $A_1=(1,2,0)$ hasta $A_2=(0,4,2)$, es decir, $\boldsymbol{r}_1(t)=A_1+t(A_2-A_1)=(1-t)\,\widehat{\boldsymbol{i}}+(2+2t)\,\widehat{\boldsymbol{j}}+2t\,\widehat{\boldsymbol{k}}$, con $t\in[0,1]$.

 C_2 se puede parametrizar tomando z = t.

$$\begin{cases}
C_1 : \mathbf{r}_1(t) &= (1-t)\,\hat{\mathbf{i}} + (2+2t)\,\hat{\mathbf{j}} + 2t\,\hat{\mathbf{k}}, t \in [0,1], \quad \checkmark \\
-C_2 : \mathbf{r}_2(t) &= (0,t^2,t), t \in [0,2], \quad \mathbf{r}_2(0) = (0,0,0) \quad \text{y} \quad \mathbf{r}_2(2) = A_2.
\end{cases}$$

$$\int_C F \cdot d\mathbf{r} = \int_{C_1} F \cdot d\mathbf{r} - \int_{C_2} F \cdot d\mathbf{r}$$

$$= \int_0^1 \mathbf{F}(\mathbf{r}_1(t)) \cdot \mathbf{r}_1'(t) dt - \int_0^2 \mathbf{F}(\mathbf{r}_2(t)) \cdot \mathbf{r}_2'(t) dt$$

$$= \int_0^1 (3+t,2,1+t) \cdot (-1,2,2) dt - \int_0 (t^2,t^2-t,t) \cdot (0,2t,1) dt$$

$$= \int_0^1 t + 3 dt - \int_0^2 t - 2t^2 + 2t^3 dt$$

6.7 Campos conservativos. Independencia de la trayectoria.

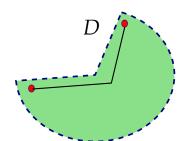
Una condición para que la integral de línea no dependa de la trayectoria que une a A con B es que exista φ tal que $F = \nabla \varphi$ con $\varphi \in C^1$. En este caso podemos calcular la integral de línea usando cualquier camino que una A con B o también, usando el Teorema Fundamental para la integral de línea.

Definición 6.6

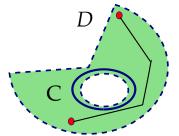
Un conjunto $D \subset \mathbb{R}^n$ se dice *conexo* si todo par de puntos de D se pueden unir con una curva regular a trozos contenida en D. Es decir, D es de "una sola pieza".

Un conjunto $D \subset \mathbb{R}^n$ abierto y conexo se dice *simplemente conexo* si toda curva cerrada simple C en D, encierra una región que está también en D. Es decir, los conjuntos simplemente conexos no tienen "agujeros".

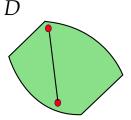
Un conjunto $D \subset \mathbb{R}^n$ se dice *convexo* si para todo par de puntos $A, B \in D$, el segmento de recta que une A con B está contenido en D, es decir, $\{A + t(B - A) : t \in [0,1]\} \subset D$.



 ${\cal D}$ es simplemente conexo, pero no convexo



D es conexo pero no simplemente conexo



Des convexo

Definición 6.7

Sea F un campo vectorial definido sobre un conjunto abierto U. Si φ es una función diferenciable sobre U tal que $F = \nabla \varphi$, decimos que φ es una función potencial de F. También decimos que F es conservativo.

Si U es conexo y F conservativo, las funciones potenciales de F son iguales salvo constantes. También se puede mostrar que si F = (P,Q) y si $P_y \neq Q_x$, entonces F no es conservativo (no tiene función potencial). La condición $P_y = Q_x$ es solo necesaria para que F sea conservativo. La condición es necesaria y suficiente si U es simplemente conexo.

Teorema 6.1 (Test de derivadas mixtas).

Sea $\mathbf{F} = P \, \hat{\mathbf{i}} + Q \, \hat{\mathbf{j}}$ es de clase C^1 en un conjunto simplemente conexo D del plano. Decimos que \mathbf{F} es conservativo sii

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Sea $\mathbf{F} = P \, \hat{\mathbf{i}} + Q \, \hat{\mathbf{j}} + R \, \hat{\mathbf{k}}$ es de clase C^1 en un conjunto simplemente conexo D del espacio. Decimos que \mathbf{F} es conservativo sii

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

$$\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$$

$$\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$$

Teorema 6.2 (Teorema Fundamental para integrales de línea).

Sea $\varphi: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ una función de clase C^1 donde D es conexo y abierto. Sea C una curva regular a trozos en D parametrizada por \mathbf{r} y sean $A = \mathbf{r}(a)$ y $B = \mathbf{r}(b)$; se tiene

$$\int_{C} \nabla \varphi \cdot d\mathbf{r} = \varphi(B) - \varphi(A)$$

Teorema 6.3 (Campos conservativos).

Sea D simplemente conexo. Sea C una curva orientada y simple contenida en D y parametrizada por r. Suponemos que C inicia en A y termina en B. Sea F un campo definido en D.

- \mathbf{F} es conservativo \iff existe φ de clase C^1 tal que $\mathbf{F} = \nabla \varphi$, sobre D.
- Si \mathbf{F} es conservativo, existe φ de clase C^1 tal que $\int_C \mathbf{F} \cdot d\mathbf{r} = \varphi(B) \varphi(A)$
- Si \mathbf{F} es conservativo, $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C'} \mathbf{F} \cdot d\mathbf{r}$ donde C' es cualquier curva regular a trozos que une A con B.
- \mathbf{F} es conservativo $\iff \int_C \mathbf{F} \cdot d\mathbf{r} = 0$ para cualquier curva cerrada simple C en D.

Observe que si $\int_C F \cdot d\mathbf{r} = 0$ para *alguna* curva cerrada simple *C*, esto no significa que **F** sea conservativo. El la parte 3. del ejemplo 6.20 tenemos un campo con integral nula sobre una elipse pero que no es conservativo.

Sea $\mathbf{F}(x,y,z) = (2x\ln(yz) - 5ye^x) \hat{\mathbf{i}} + \left(\frac{x^2}{y} - 5e^x\right) \hat{\mathbf{j}} + \left(\frac{x^2}{z} + 2z\right) \hat{\mathbf{k}}$ y sea C una curva simple que une A = (2,2,1) con B = (3,1,e). Calcule $\int_C F \cdot d\mathbf{r}$.

Solución: F es de clase C^1 en la región $D = \{(x,y,z): x > 0, y > 0, z > 0\}$. Esta región es simplemente conexa. El campo es conservativo en esta región pues,

$$\frac{\partial P}{\partial y} = -5e^x + 2x/y = \frac{\partial Q}{\partial x}$$
$$\frac{\partial P}{\partial z} = 2x/z = \frac{\partial R}{\partial x}$$
$$\frac{\partial Q}{\partial z} = 0 = \frac{\partial R}{\partial y}$$

Luego, podemos calcular la integral de línea usando un camino C' en D que una A con B o también podemos calcular una función potencial φ y usar el teorema fundamental para integrales de línea. En este caso vamos a calcular la integral usando la función potencial φ .

Como $\nabla \varphi = F$ entonces $\varphi_x = P$, $\varphi_y = Q$, y $\varphi_z = R$.

$$\varphi_x = 2x \ln(yz) - 5ye^x \implies \varphi(x,y,z) = \int 2x \ln(yz) \, dx = x^2 \ln(yz) - 5ye^x + K(y,z).$$

$$\varphi_y = \frac{x^2}{y} - 5e^x$$

$$\varphi_z = \frac{x^2}{z} + 2z$$

Ahora solo falta determinar K(x,y). Derivando respecto a y tenemos

$$\varphi_y = \frac{x^2}{y} - 5e^x = \frac{x^2}{y} - 5e^x + \frac{\partial K}{\partial y} \implies \frac{\partial K}{\partial y} = 0$$

con lo que K solo pod**r**ía ser una función de z, K=K(z). Por lo tanto $\varphi(x,y,z)=x^2\ln(yz)-5ye^x+K(z)$

Para determinar K(z) igualamos las derivadas parciales respecto a z

$$\varphi_z = \frac{x^2}{z} + 2z = \frac{x^2}{z} + K'(z) \implies K'(z) = 2z$$

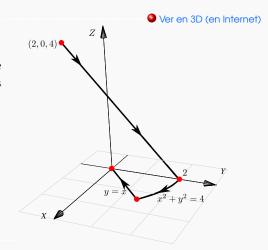
Integrando respecto a z tenemos $K(z)=z^2+K_1$. Finalmente $\varphi(x,y,z)=x^2\ln(yz)-5ye^x+z^2+K_1$

$$\int_C F \cdot d\mathbf{r} = \varphi(B) - \varphi(A) = 8 + 11e^2 - 5e^3 - 4\log(2) \approx -13.9207.$$

Considere el campo de fuerzas $F(x,y,z) = 4xe^z \hat{i} + \cos(y) \hat{j} + 2x^2e^z \hat{k}$. Sea C la curva de la figura. Calcule $\int_C F \cdot d\mathbf{r}$.

Solución: F es de clase C^1 sobre $D = \mathbb{R}^3$ que es simplemente conexa. Dichosamente no tenemos que integrar sobre la curva C pues F es conservativo. En efecto

$$\frac{\partial P}{\partial y} = 0 = \frac{\partial Q}{\partial x}$$
$$\frac{\partial P}{\partial z} = 4xe^z = \frac{\partial R}{\partial x}$$
$$\frac{\partial Q}{\partial z} = 0 = \frac{\partial R}{\partial y}$$



En este ejemplo vamos a calcular la integral de dos maneras distintas: usando la función potencial y también usando un camino C'.

Primer Manera: Con un camino C' que inicia en (2,0,4) y termina en (0,0,0). El camino que hemos escogido se ve en la figura.

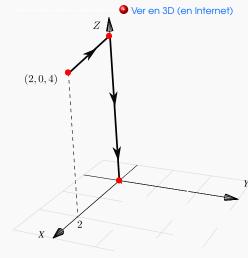
$$\begin{cases}
-C_1 : r_1(t) = (t,0,4) \text{ con } t \in [0,2] \\
-C_2 : r_2(t) = (0,0,t) \text{ con } t \in [0,4]
\end{cases}$$

$$\int_{C'} F \cdot d\mathbf{r} = \int_{C_1} F \cdot d\mathbf{r} + \int_{C_2} F \cdot d\mathbf{r}$$

$$= -\int_0^2 \mathbf{F}(t, 0, 4) \cdot \mathbf{r}_1'(t) dt - \int_0^4 \mathbf{F}(0, 0, t) \cdot \mathbf{r}_2'(t) dt$$

$$= -\int_0^2 (4e^4t, 1, 2e^4t^2) \cdot (1, 0, 0) dt - \int_0^4 (0, 1, 0) \cdot (0, 0, 1) dt$$

$$= -\int_0^2 4te^4 dt = -8e^4.$$



Segunda Manera: Con una función potencial.

$$\begin{cases} \varphi_x &= 4xe^z \implies \varphi(x,y,z) = \int 4xe^z dx = 2x^2e^z + K_1(y,z), \\ \varphi_y &= \cos(y) \implies \varphi(x,y,z) = \int \cos y dy = \sin y + K_2(x,z), \implies \varphi(x,y,z) = 2x^2e^z + \sin y + C \\ \varphi_z &= 2x^2e^z \implies \varphi(x,y,z) = \int 2x^2e^z dz = 2x^2e^z + K_3(x,y). \end{cases}$$

Finalmente,
$$\int_C F \cdot d\mathbf{r} = \varphi(0,0,0) - \varphi(2,0,4) = -8e^4$$
.

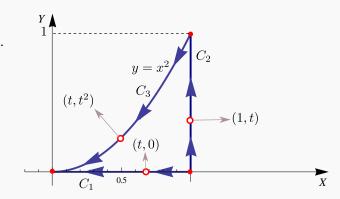
235

Ya sabíamos que $\int_C y^2 dx + x^2 dy = 0$ donde C es la elipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$. Como sabemos, $\mathbf{F}(x,y) = (y^2, x^2)$ no es conservativo. Encuentre otra curva cerrada C para la cual $\int_C y^2 dx + x^2 dy \neq 0$.

Solución: Consideremos la curva cerrada *C* de la figura.

$$C_1$$
: $r_1(t) = (t,0)$ con $t \in [0,1]$
 C_2 : $r_2(t) = (1,t)$ con $t \in [0,1]$
 C_3 : $c_3(t) = (t,t^2)$ con $c_3(t) = [0,1]$

$$-C_3$$
: $r_3(t) = (t, t^2)$ con $t \in [0, 1]$



$$\int_{C} y^{2} dx + x^{2} dy = \int_{C_{1}} y^{2} dx + x^{2} dy + \int_{C_{2}} y^{2} dx + x^{2} dy - \int_{-C_{3}} y^{2} dx + x^{2} dy$$

$$= \int_{0}^{1} (0, t^{2}) \cdot (\mathbf{1}, \mathbf{0}) dt + \int_{0}^{1} (t^{2}, \mathbf{1}) \cdot (\mathbf{0}, \mathbf{1}) dt - \int_{0}^{1} (t^{4}, t^{2}) \cdot (\mathbf{1}, 2t) dt$$

$$= \int_{0}^{1} 0 dt + \int_{0}^{1} 1 dt - \int_{0}^{1} [t^{4} + 2t^{3}] dt = \frac{3}{10}.$$

6.8 Teorema de Green (en el plano).

El siguiente teorema, llamado "Teorema de Green en el plano", aplica para regiones planas limitadas por curvas cerradas y simples, regulares a trozos. Una idea intuitiva, en términos de "circulación", se puede ver en la sección 6.16.

Teorema 6.4 (Teorema de Green en el plano).

Sean P y Q campos escalares derivables con continuidad en un conjunto abierto S_1 del plano XY. Sea C una curva simple cerrada regular a trozos y sea D la región encerrada por C (es decir, $C = \partial D$). Si D está contenida en S, se tiene la identidad

$$\iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA = \oint_C P dx + Q dy$$

donde C es recorrida en sentido contrario a las agujas del reloj.

• Intuitivamente, C es recorrida en sentido contrario a las agujas del reloj si al caminar a lo largo de C la región D está siempre a la izquierda. Notar que $C = \partial D$ indica que C es la *frontera* de D.

Ejemplo 6.26

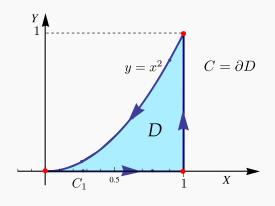
Calcular $\int_C y^2 dx + x^2 dy$ si C es la curva de la figura.

Solución: En este caso, $P(x,y) = y^2$ y $Q(x,y) = x^2$. Como se cumplen las condiciones del teorema de Green entonces,

$$\int_{C} y^{2} dx + x^{2} dy = \iint_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$$

$$= \int_{0}^{1} \int_{0}^{x^{2}} 2x - 2y \, dy \, dx$$

$$= \int_{0}^{1} 2x^{3} - x^{4} \, dx = \frac{3}{10}$$



Ejemplo 6.27

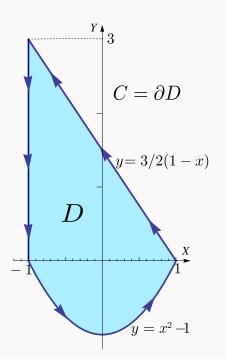
Calcular $\int_C (x+y)dx + (3x + \arctan y) dy$ si C es la curva de la figura.

Solución: En este ejemplo, P(x,y) = x + y y $Q(x,y) = 3x + \arctan(y)$. Como se cumplen las condiciones del teorema de Green, entonces

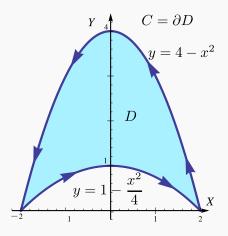
$$\int_C (x+y)dx + (3x + \arctan y) dy = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$$

$$= \int_{-1}^1 \int_{x^2 - 1}^{\frac{3-3x}{2}} 3 - 1 dy dx$$

$$= \int_{-1}^1 5 - 3x - 2x^2 dx = \frac{26}{3}$$



Calcular $\int_C (x + \arcsin x) dx + (2x + \ln(y^2 - 3)) dy$ si C es la curva de la figura,



Solución: En este ejemplo, $P(x,y) = x + \operatorname{arcsen} x$ y $Q(x,y) = 2x + \ln(y^2 - 3)$. Como se cumplen las condiciones del teorema de Green podemos poner

$$\int_C (x + \operatorname{arcsen} x) dx + (2x + \ln(y^2 - 3)) dy = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$$

$$= \int_{-2}^2 \int_{1-x^2/4}^{4-x^2} 2 dy dx$$

$$= \int_{-2}^2 6 - \frac{3x^2}{2} dx = 16.$$

6.9 Área como una integral de línea.

Si P(x,y) = -y/2 y Q(x,y) = x/2 entonces $Q_x - P_y = 1$, aplicando el teorema de Green (si se cumplen las condiciones) obtenemos otra manera para calcular el área de A_D siendo la frontera de la región D una curva orientada contra-reloj.

$$A_D = \iint_D 1 dA = \oint_C -\frac{y}{2} dx + \frac{x}{2} dy$$

Lo cual puede ser conveniente si la integral de línea no ofrece gran dificultad.

Teorema 6.5

Si D es una región plana limitada por una curva C, cerrada simple, regular a trozos y orientada contra-reloj, entonces el área de D viene dada por

$$A_D = \frac{1}{2} \int_C x \, dy - y \, dx$$

Ejemplo 6.29

Calcular el área de la región encerrada por la elipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$.

Solución: Parametrizamos la elipse con $\mathbf{r}(t) = a\cos t \,\hat{\mathbf{i}} + b\sin t \,\hat{\mathbf{j}}$ con $t \in [0,2\pi[$. Esta parametrización orienta la elipse contra-reloj. En este caso, $x = a\cos t \, y \, dx = -a\sin t \, dt$, mientras que $y = b\sin t \, y \, dy = b\cos t \, dt$,

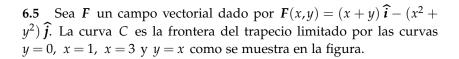
$$A_D = \frac{1}{2} \int_C x \, dy - y \, dx = \frac{1}{2} \int_0^{2\pi} a \cos t \cdot b \cos t \, dt + b \sin t \cdot a \sin t \, dt = \frac{ab}{2} 2\pi = \pi ab.$$

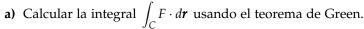
EJERCICIOS

6.4 Calcule la integral de línea

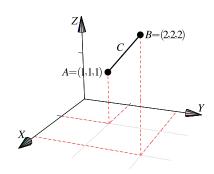
$$\int_C \frac{x+y+z}{x^2+y^2+z^2} \, ds$$

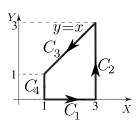
donde C es el segmento de recta que va desde A = (1,1,1) hasta el punto B = (2,2,2), tal y como se muestra en la figura a la derecha



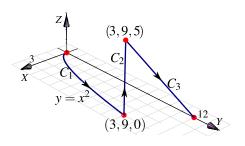


b) Calcular la integral $\int_C F \cdot d\mathbf{r}$ sin utilizar el teorema de Green.



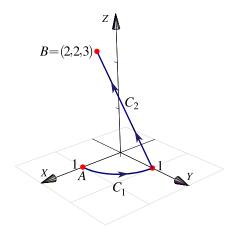


6.6 Evalúe $\int_C x^2z dx - yx^2 dy + 3xz dz$ con $C = C_1 \cup C_2 \cup C_3$ donde C_1, C_2, C_3 son las curvas que se muestran en la figura.

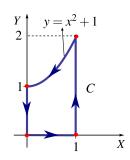


6.7 Evalúe la integral de línea $\int_C x \, ds$ donde $C = C_1 \cup C_2 \cup C_3$ es la curva del ejercicio anterior.

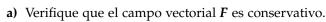
6.8 Calcule $I = \int_C x \, dx + z \, dy + dz$. La curva $C = C_1 \cup C_2$ es la curva que aparece en la figura; C_1 es un trozo de la circunferencia $x^2 + y^2 = 1$ y C_2 es el segmento que va de (0,1,0) a B = (2,2,3).



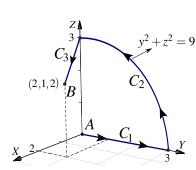
6.9 Considere el campo vectorial $\mathbf{F}(x,y,z) = y\,\hat{\mathbf{i}} + x^2\,\hat{\mathbf{j}}$. Calcule la integral de línea $\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$ donde \mathbf{C} es la curva que se muestra en la figura a la derecha



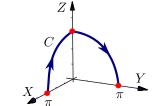
6.10 Sea $\mathbf{F}(x,y,z) = (yz + y\cos(xy))\,\hat{\mathbf{i}} + (xz + x\cos(xy))\,\hat{\mathbf{j}} + xy\,\hat{\mathbf{k}}$ y \mathbf{C} la trayectoria que va de A hasta B de acuerdo a la figura de la derecha.



- b) Calcule la integral de línea $\int_C \mathbf{F} \cdot d\mathbf{r}$ utilizando la función potencial.
- c) Calcule la integral de línea $\int_C \mathbf{F} \cdot d\mathbf{r}$ sin usar la función potencial.

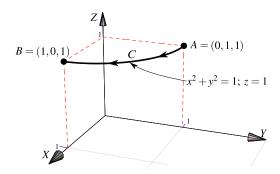


6.11 Sea $F(x,y,z) = (yz^2 - \sin x \sin(\pi - y), xz^2 - \cos(\pi - y)\cos x, 2xyz)$ un campo vectorial dado y sea C la curva que une los puntos $(\pi,0,0)$ con $(0,\pi,0)$, como se ve en la figura



- **a.)** Verifique que F es conservativo.
- **b.)** Calcule $\int_C \mathbf{F} \cdot d\mathbf{r}$ usando la función potencial.

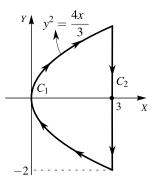
6.12 Sea $\mathbf{F}(x,y,z) = (2x+5)\hat{\imath} + (3y^2)\hat{\jmath} + \frac{1}{z}\hat{k}$ y \mathbf{C} la trayectoria que va de A = (0,1,1) hasta B = (1,0,1) de acuerdo a la figura de la derecha.



- a) Verifique que el campo vectorial F es conservativo.
- b) Calcule la integral de línea $\int_C \mathbf{F} \cdot d\mathbf{r}$ utilizando la función potencial
- c) Calcule la integral de línea $\int_C \mathbf{F} \cdot d\mathbf{r}$, sin usar la función potencial.
- **6.13** Considere el campo vectorial

$$\mathbf{F}(x,y) = x\,\hat{\mathbf{\imath}} + (x+y^2)\,\hat{\mathbf{\jmath}}.$$

Calcular $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ donde $\mathbf{C} = \mathbf{C}_1 + \mathbf{C}_2$ tal y como se muestra en la figura a la derecha.



6.10 Superficies parametrizadas.

Un parametrización de una superficie S en \mathbb{R}^3 es una función inyectiva $\mathbf{r}: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, $\mathbf{r}(u,v) = (x(u,v),y(u,v),z(u,v))$ con x(u,v), y(u,v) y z(u,v) funciones continuas sobre D, cuya imagen es S, es decir, $\mathbf{r}(D) = S$. La superficie $S = \mathbf{r}(D)$ se puede describir como

$$S: \mathbf{r}(u,v) = x(u,v)\,\hat{\mathbf{i}} + y(u,v)\,\hat{\mathbf{j}} + z(u,v)\,\hat{\mathbf{k}}, \ (u,v) \in D.$$

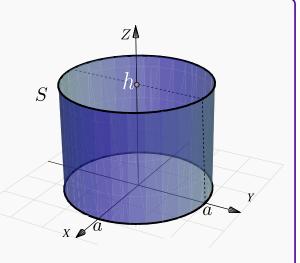
Caso especial. Una superficie S: z = f(x,y) en un dominio D, se puede parametrizar como

$$\mathbf{r}(x,y) = x\,\hat{\mathbf{i}} + y\,\hat{\mathbf{j}} + f(x,y)\,\hat{\mathbf{k}},\ (x,y) \in D.$$

Observe que D es una proyección de la superficie en el plano XY.

Sea $S_1: x^2+y^2=a^2$, $0 \le z \le h$. S_1 es el cilindro de la figura. Esta superficie se puede parametrizar como

 $\mathbf{r}(\theta, z) = a\cos\theta \,\hat{\mathbf{i}} + a\sin\theta \,\hat{\mathbf{j}} + z\,\hat{\mathbf{k}}, \text{ con } (\theta, z) \in D = [0, 2\pi[\times[0, h].$

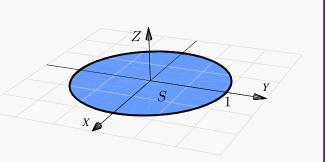


Ejemplo 6.31

Considere la superficie $S: x^2 + y^2 \le 1$, z = 0. Claramente S es el círculo de radio 1 en el plano XY, centrado en el origen.

Para describir a S podemos escribir S: z=0 en el dominio $D=\{x^2+y^2\leq 1\}$. Pero más conveniente es parametrizar S como

$$r(x,y) = x \hat{i} + y \hat{j} + 0 \cdot \hat{k}, (x,y) \in D.$$



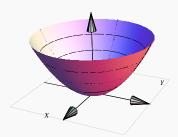
Ejemplo 6.32

Sea S_1 la porción del paraboloide $z=x^2+y^2$ entre z=0 y z=1. Entonces S_1 se puede parametrizar como,

$$S: \mathbf{r}(x,y) = x\,\widehat{\mathbf{i}} + y\,\widehat{\mathbf{j}} + (x^2 + y^2)\,\widehat{\mathbf{k}}, \ (x,y) \in D = \{(x,y): x^2 + y^2 \le 1\}.$$

También, $z=x^2+y^2$ se podría ver como circunferencias de radio \sqrt{z} , entonces

$$S: \mathbf{r}(\theta, z) = \sqrt{z} \cos t \, \hat{\mathbf{i}} + \sqrt{z} \sin t \, \hat{\mathbf{j}} + z \, \hat{\mathbf{k}}, \ \theta \in [0, 2\pi[\ y \ z \in [0, 1].$$



6.11 Superficies regulares.

Sea $S: \mathbf{r}(u,v) = x(u,v) \, \hat{\mathbf{i}} + y(u,v) \, \hat{\mathbf{j}} + z(u,v) \, \hat{\mathbf{k}} \, \text{con} \, (u,v) \in D. \, \mathbf{r} \, \text{es de clase} \, C^1 \, \text{si} \, x(u,v), \, y(u,v) \, \mathbf{y} \, z(u,v) \, \text{son de}$ clase C^1 (funciones continuamente diferenciables). En este caso, consideremos los vectores $\frac{\partial \mathbf{r}}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \, \mathbf{y}$ $\frac{\partial \mathbf{r}}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right),$

Definición 6.8

Sea D abierto y sea S una superficie parametrizada por $\mathbf{r}: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ de clase C^1 . Decimos que S_1 es una superficie $\operatorname{regular}$ en (u,v) si $\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \neq \mathbf{\hat{0}}$. Si S_1 se puede partir en un número finito de elementos regulares se dice regular a trozos.

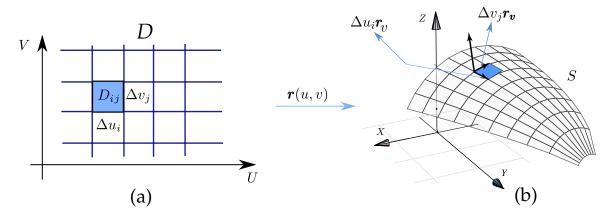
Observe que si S: z = f(x,y) entonces si $\mathbf{r}(x,y) = x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + f(x,y) \hat{\mathbf{k}}$ en D con f_x y f_y continuas,

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} = (-f_x, -f_y, 1) \neq \mathbf{\hat{0}}.$$

con lo cual la superficie S_1 es regular en D.

6.12 Área de una superficie.

La idea de la definición de área de una superficie paramétrica es la siguiente.



Partimos D en n rectángulos como (a). El rectángulo D_{ij} tiene área $\Delta u_i \Delta v_j$. En cada D_{ij} se toma el punto (u_i, v_j) más cercano al origen. En el punto $\mathbf{r}(u_i, v_j)$ de la superficie S_1 , el plano tangente tiene ecuación

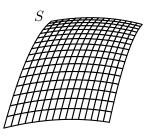
$$T_i: \mathbf{r}(u_i, v_i) + t\mathbf{r}_u(u_i, v_i) + s\mathbf{r}_v(u_i, v_i), \text{ con } t, s \in \mathbb{R}.$$

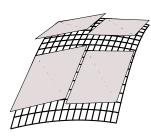
La porción de superficie de S_1 que es imagen de a D_{ij} se puede aproximar con un paralelogramo en el plano tangente de lados $\Delta u_i \mathbf{r}_u$, $\Delta v_j \mathbf{r}_v$. Como es sabido, este paralelogramo tiene área

$$||\Delta u_i r_u \times \Delta v_i r_v||$$

Sacando los escalares y sumando el área de todos los paralelogramos tenemos

Área de la superficie
$$S \approx \sum ||r_u \times r_v||\Delta u_i \Delta v_j$$





Definición 6.9 (Área de una superficie).

Sea S_1 una superficie regular definida sobre un conjunto abierto medible D. Digamos que

$$S: \mathbf{r}(u,v) = x(u,v)\,\hat{\mathbf{i}} + y(u,v)\,\hat{\mathbf{j}} + z(u,v)\,\hat{\mathbf{k}} \quad \text{con} \quad (u,v) \in D.$$

Entonces, el área A_S de la superficie S es

$$A_S = \iint_D \left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \right| du dv$$

Si
$$S: z = f(x,y)$$
, una parametrización es $\mathbf{r}(x,y) = x \, \mathbf{\hat{\imath}} + y \, \mathbf{\hat{\jmath}} + f(x,y) \, \mathbf{\hat{k}} \, \mathbf{y} \, \left| \left| \frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y} \right| \right| = \sqrt{1 + f_x^2 + f_y^2}$. Entonces,
$$A_S = \iint_{\mathbb{R}^n} \sqrt{1 + f_x^2 + f_y^2} \, dA$$

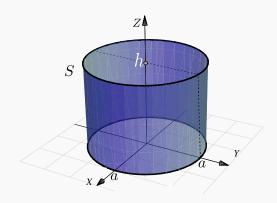
• Si $S: \mathbf{F}(x,y,z) = 0$ donde S_1 se puede proyectar *uno a uno* sobre una región D del plano XY y si \mathbf{F} define a z como función de x e y y si $\mathbf{F}_z \neq 0$ entonces $z_x = -F_x/F_z$ y $z_y = -F_y/F_z$ y la fórmula anterior quedaría

$$A_{S} = \iint_{D} \frac{\sqrt{F_{x}^{2} + F_{y}^{2} + F_{z}^{2}}}{|F_{z}|} dA$$

Calcular el área del cilindro $x^2 + y^2 = a^2$ de altura h, es decir $0 \le z \le h$.

Solución: Como ya vimos, la parametrización de esta superficie es

$$r(\theta,z) = a\cos\theta \,\hat{i} + a\sin\theta \,\hat{j} + z\,\hat{k}, \ (\theta,z) \in D = [0,2\pi[\times[0,h].$$



•
$$\mathbf{r}_{\theta} = (-a \operatorname{sen} \theta, a \cos \theta, 0)$$

Entonces,

•
$$r_z = (0, 0, 1)$$

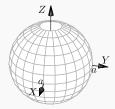
Luego,

$$A_S = \iint_D \left| \left| \frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial z} \right| \right| dz d\theta = \int_0^{2\pi} \int_0^h a dz d\theta = 2h\pi a.$$

Ejemplo 6.34

Calcular el área de la superficie de la esfera $S: x^2 + y^2 + z^2 = a^2$.

Solución: Vamos a calcular de dos maneras, parametrizando con coordenadas esféricas y parametrizando con coordenadas rectangulares (más complicado).



Primera manera: La esfera la podemos parametrizar con coordenadas esféricas,

$$S: \mathbf{r}(\theta, \varphi) = a \operatorname{sen} \varphi \cos \theta \; \widehat{\mathbf{i}} + \; a \operatorname{sen} \varphi \operatorname{sen} \theta \; \widehat{\mathbf{j}} + a \cos \varphi \; \widehat{\mathbf{k}}, \; \; \operatorname{con} \quad (\theta, \varphi) \in D = [0, 2\pi[\times[0, \pi]] + (0, \varphi)]$$

$$\bullet \frac{\partial \mathbf{r}}{\partial \theta} = (-a \operatorname{sen} \theta \operatorname{sen} \varphi, a \cos \theta \operatorname{sen} \varphi, 0)$$

$$\implies \left| \left| \frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial z} \right| \right| = a^2 \operatorname{sen} \varphi$$

$$\bullet \frac{\partial \mathbf{r}}{\partial \varphi} = (a\cos\theta\cos\varphi, a\cos\varphi\sin\theta, -a\sin\varphi)$$

$$A_S = \iint_D \left| \left| \frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial \varphi} \right| \right| d\varphi d\theta = \int_0^{2\pi} \int_0^{\pi} a^2 \operatorname{sen} \varphi d\varphi d\theta = 4a^2 \pi.$$

Ejemplo 6.34 (continuación).

Segunda manera: Usamos la parametrización $\mathbf{r}(x,y) = x \hat{\imath} + y \hat{\jmath} + \sqrt{a^2 - x^2 - y^2} \hat{k}$. Solo vamos a calcular el área de la parte superior de la esfera. El área total la obtenemos multiplicando por dos.

Conviene hacer cambio de variable y usar coordenadas polares. Observe que las derivadas se indefinen en la frontera del círculo (si r = a). La integral se calcula desde 0 hasta $r = \epsilon$ con $0 < \epsilon < a$. Al final hacemos $\epsilon \longrightarrow a$.

$$A_S = 2 \iint_D \sqrt{1 + \frac{x^2 + y^2}{a - x^2 - y^2}} dA$$

$$= 2 \int_0^{2\pi} \int_0^{\epsilon} \frac{a}{\sqrt{a^2 - r^2}} r dr d\theta \quad \text{(integral impropia!)}$$

$$= 2 \int_0^{2\pi} a^2 d\theta = 4a^2 \pi$$

• Para calcular $\int_0^\epsilon \frac{a}{\sqrt{a^2-r^2}} r dr$ hacemos $u=a^2-r^2$, $du=-2r d\mathbf{r}$. Queda

$$-\frac{1}{2} \int_{a^2}^{a^2 - \epsilon^2} \frac{a}{\sqrt{u}} du = -\frac{a}{2} \frac{\sqrt{u}}{1/2} \Big|_{a^2}^{a^2 - \epsilon^2} = a^2 - a\sqrt{a^2 - \epsilon^2} \longrightarrow a^2 \text{ si } \epsilon \longrightarrow a.$$

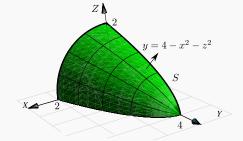
Nota: Observe que A_S también se pudo calcular con $A_S = \iint_D \frac{\sqrt{F_x^2 + F_y^2 + F_z^2}}{|F_z|} dA$. En este caso $F(x,y,z) = x^2 + y^2 + z^2 - a^2 = 0$. Puesto que esta fórmula solo se puede usar si la proyección es *uno a uno* con la superficie, solo podemos considerar la parte superior de la esfera. Pasando a polares, la integral queda igual al cálculo anterior.

Ejemplo 6.35

• Hacer clic en la figura para ver en 3D (en Internet)

Calcular el área de la superficie $S: y = 4 - x^2 - z^2$.

Solución: La proyección sobre XZ es el círculo $x^2 + z^2 = 4$.



Ejemplo 6.35 (continuación).

Primera manera: Usamos la parametrización $\mathbf{r}(x,y) = x\,\mathbf{\hat{\imath}} + (4-x^2-z^2)\,\mathbf{\hat{\jmath}} + z\,\mathbf{\hat{k}}$ con $D = \{x^2+z^2 \le 2\}$. El cambio de variable es $\mathbf{r} = r\cos\theta$, $\mathbf{z} = r\sin\theta$, $\theta \in [0,\pi/2]$.

$$A_{S} = \iint_{D} \sqrt{1 + y_{x}^{2} + y_{z}^{2}} dA$$

$$= \iint_{D} \sqrt{1 + 4x^{2} + 4z^{2}} dA, \text{ cambio de variable: } \begin{cases} x = r \cos \theta \\ z = r \sin \theta \end{cases}$$

$$= \int_{0}^{\pi/2} \int_{0}^{2} \sqrt{1 + 4r^{2} \cos^{2} \theta + 4r^{2} \sin^{2} \theta} r dr d\theta$$

$$= \int_{0}^{\pi/2} \int_{0}^{2} \sqrt{1 + 4r^{2}} r dr d\theta$$

$$= \int_{0}^{\pi/2} \frac{(1 + 4r^{2})^{\frac{3}{2}}}{12} \Big|_{0}^{2} d\theta$$

$$= \int_{0}^{\pi/2} \frac{17\sqrt{17} - 1}{12} d\theta = \frac{\pi}{24} (17\sqrt{17} - 1) \approx 9.04423.$$

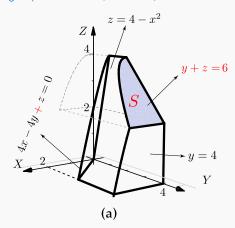
Segunda manera: Podemos usar la parametrización $\mathbf{r}(y,\theta) = \sqrt{4-y}\cos\theta \, \hat{\mathbf{i}} + y \, \hat{\mathbf{j}} + \sqrt{4-y}\sin\theta \, \hat{\mathbf{k}} \, \cos y \in [0,4] \, y$ $\theta \in [0,\pi/2].$

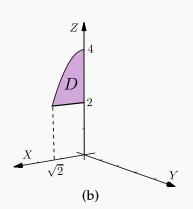
$$A_S = \iint_D \left| \left| \frac{\partial \mathbf{r}}{\partial y} \times \frac{\partial \mathbf{r}}{\partial \theta} \right| \right| dy d\theta = \int_0^{\pi/2} \int_0^4 \sqrt{17/4 - y} \, dy d\theta = \frac{\pi}{24} \left(17\sqrt{17} - 1 \right).$$

Ejemplo 6.36

Calcular el área de la superficie S: y + z = 6 tal y como se ve en la figura (a).

• Hacer clic en la figura para ver en 3D (en Internet)





Ejemplo 6.36 (continuación).

Solución: Como S: y(x,z) = 6-z, usamos la parametrización $\mathbf{r}(x,z) = x \hat{\imath} + (6-z) \hat{\jmath} + z \hat{k}$ sobre la región D definida por $x \in [0,\sqrt{2}]$ y $2 \le z \le 4-x^2$. Entonces $y_x = 0$ y $y_z = -1$. La proyección sobre D_{xz} se ve en la figura (b).

$$A_S = \iint_D \sqrt{1 + y_x^2 + y_z^2} dA$$

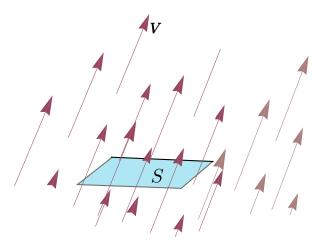
$$= \int_0^{\sqrt{2}} \int_0^{4 - x^2} \sqrt{2} dz dx$$

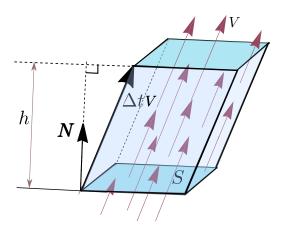
$$= \int_0^{\sqrt{2}} \sqrt{2} (4 - x^2) dx = 20/3$$

6.13 Integral sobre una superficie.

Supongamos que tenemos una región plana S y queremos determinar la cantidad de "fluido" a través de S (se supone que el fluido puede atravesar la región). La cantidad de fluido es "densidad por volumen." Si el flujo se mueve con velocidad constante V, entonces durante un intervalo de tiempo Δt llenará un cuboide de base S y "extensión" (arista) Δt V. El volumen de este cuboide es "área de la base" ΔS por "altura", la altura h se calcula con la proyección de V sobre el vector normal unitario a S, denotado V. Como se sabe, $h = \Delta t V \cdot V$, entonces

$$V_S = \mathbf{V} \cdot \mathbf{N} \Delta S \Delta t$$





La masa del fluido es $\Delta M = \rho \mathbf{V} \cdot \mathbf{N} \Delta S \Delta t$ donde ρ es la densidad. La *densidad del fluido* es $\mathbf{F} = \rho \mathbf{V}$ y el *flujo total* es la masa de fluido que pasa a través de S en una unidad de tiempo: $\mathbf{F} \cdot \mathbf{N} \Delta S$ kilogramos por segundo.

Ahora digamos que tenemos una corriente de fluido en el espacio con velocidad V(x,y,z) y densidad (masa por unidad de volumen) $\rho(x,y,z)$ en cada punto (x,y,z). El vector densidad de flujo

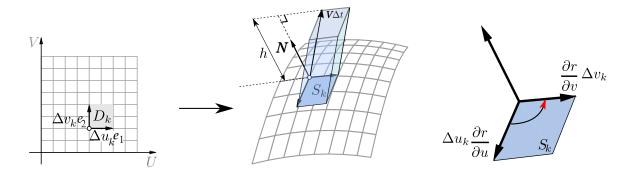
$$\mathbf{F}(x,y,z) = \mathbf{V}(x,y,z)\rho(x,y,z)$$

tiene la misma dirección que la velocidad y nos dice cuánta masa de fluido circula por el punto (x,y,z) en la dirección de V(x,y,z), por unidad de área y de tiempo.

Para sugerir una *definición razonable* de cómo medir la masa total de fluido que atraviesa una determinada superficie S_1 en el tiempo, se considera la superficie S_1 parametrizada por $\mathbf{r}(u,v)$ en una región rectangular D. Sea \mathbf{N} el vector unitario normal que tiene la misma dirección que el producto vectorial fundamental,

$$\mathbf{N} = \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \right|}$$
(6.1)

Para medir la cantidad de fluido que pasa a través de S_1 en la unidad de tiempo y en la dirección de N, se descompone el rectángulo D en m subrectángulos $D_1, D_2, ..., D_m$. Sean $S_1, S_2, ..., S_m$ las correspondientes porciones de superficie en S. Llamamos ΔS_k a la k-ésima porción S_k . Si la densidad ρ y la velocidad V son constantes en S_k y S_k es suficientemente plana, el fluido que atraviesa S_k en la unidad de tiempo ocupa un sólido cilíndrico oblicuo con base S_k y eje determinado por el vector velocidad V.



Como el área de S_k es $\Delta S_k = \left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \right| \Delta u_k \Delta v_k$, el fluido sobre S_k ocupa un sólido cilíndrico de volumen (base por altura),

$$\Delta S_k \rho \mathbf{V} \cdot \mathbf{N} = \mathbf{F} \cdot \mathbf{N} \Delta S_k \approx \mathbf{F} \cdot \mathbf{N} \left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \right| \Delta u_k \Delta v_k$$

Esto sugiere que la suma $\sum_{k=1}^{m} \mathbf{F} \cdot \mathbf{N} \Delta S_k$ puede ser una aproximación aceptable de la masa total de fluido que atraviesa S_k en la unidad de tiempo.

Si ponemos $f(x,y,z) = \mathbf{F} \cdot \mathbf{N}$, tenemos la siguiente definición (la notación \overline{D} significa \overline{D} = interior $(D) \cup \partial D$)

Definición 6.10

Sea D un abierto medible y S_1 una superficie regular parametrizada por la función $\mathbf{r}(u,v)$, de clase C^1 en \overline{D} , donde $(u,v) \in D$, de modo que $\left|\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right|\right| > 0$ para todo $(u,v) \in D$, r es una biyección entre D y S.

Sea f(x,y,z) una función definida y acotada sobre \overline{S} . Se define la integral de superficie de f sobre S_1 por

$$\iint_{S_1} f(x,y,z) dS = \iint_D f(\mathbf{r}(u,v)) \left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \right| du dv.$$

Si $S = S_1 \cup ... \cup S_m$ es la unión finita de superficies parametrizadas que se intersecan a lo sumo en curvas que forman parte de sus fronteras entonces,

$$\iint_{S_1} g(x, y, z) dS = \sum_{i=1}^{m} \iint_{S_i} g(x, y, z) dS$$

• Integral de superficie con coordenadas rectangulares.

Si $S_1: z = f(x,y)$ con f de clase C^1 sobre \overline{D} , se puede parametrizar S_1 con con $\mathbf{r}(x,y) = x \, \widehat{\mathbf{i}} + y \, \widehat{\mathbf{j}} + f(x,y) \, \widehat{\mathbf{k}}$ y entonces

$$\iint_{S_1} g(x,y,z) \, dS = \iint_D g(x,y,f(x,y)) \sqrt{1 + f_x^2 + f_y^2} \, dx dy.$$

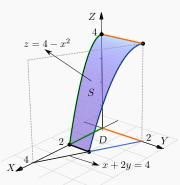
Ejemplo 6.37

Calcular la integral de superficie $\iint_{S_1} \frac{z+x^2}{\sqrt{1+4x^2}} dS$ con S_1 la porción de la superficie $z=4-x^2$ limitada por el plano x+2y=4, como se muestra en la figura

Solución: En coordenadas rectangulares, $\sqrt{1+z_x^2+z_y^2}=\sqrt{1+4x^2}$,

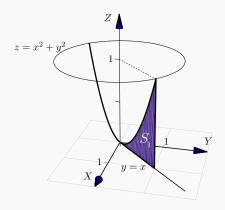
$$\iint_{S_1} \frac{z+x^2}{\sqrt{1+4x^2}} dS = \iint_{D} \frac{4-x^2+x^2}{\sqrt{1+4x^2}} \sqrt{1+4x^2} dA = \int_{0}^{2} \int_{0}^{2-x/2} 4 dy dx = 12.$$

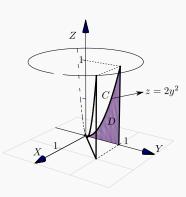
• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 6.38 (Integrando sobre YZ).

Calcular la integral de superficie $\iint_{S_1} 2xyz \, dS$ con S_1 la parte del plano y=x limitado por $z=x^2+y^2$, como se muestra en la figura.





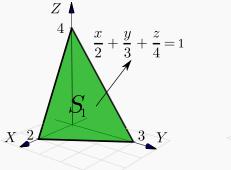
Solución: La superficie S_1 solo se puede proyectar en los planos XZ o en YZ. La curva C de la proyección en el plano YZ se obtiene como la intersección del plano YZ el paraboloide: $C: y = x \cap z = x^2 + y^2 \implies C: z = 2y^2$.

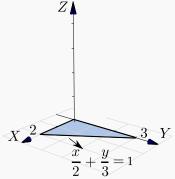
Como proyectamos en YZ, entonces S_1 : x = y y $\sqrt{1 + x_y^2 + x_z^2} = \sqrt{2}$. Luego,

$$\iint_{S_1} 2xyz \, dS = \iint_D 2xyz \, \sqrt{1 + y_x^2 + y_z^2} \, dA$$
$$= \int_0^1 \int_0^{2y^2} 2y^2 z \sqrt{2} \, dz \, dy = 4\sqrt{2}/7$$

Ejemplo 6.39

Calcular la integral de superficie $\iint_{S_1} z + 2x + \frac{4}{3}y \, dS$ con S_1 la parte del plano $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ situada en el primer octante.





Ejemplo 6.39 (continuación).

Solución: Como S_1 : $z=4-2x-\frac{4}{3}y$ entonces $\sqrt{1+z_x^2+z_y^2}=\sqrt{61}/3$. Las variables de integración son x e y así que debemos sustituir z en el integrando,

$$\iint_{S_1} z + 2x + 4/3y \, dS = \iint_D (z + 2x + 4/3y) \sqrt{1 + z_x^2 + z_y^2} \, dA$$

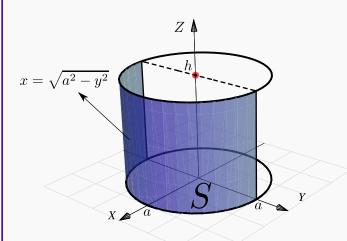
$$= \int_0^2 \int_0^{3 - 3x/2} \left(4 - 2x - \frac{4}{3}y + 2x + \frac{4}{3}y \right) \frac{\sqrt{61}}{3} \, dy \, dx$$

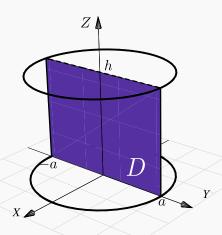
$$= \int_0^2 \int_0^{3 - 3x/2} 4 \, \frac{\sqrt{61}}{3} \, dy \, dx = 4\sqrt{61}.$$

Ejemplo 6.40

Sea a>0 y sea $I=\iint_{S_1}\frac{1}{a^2+z^2}\,dS$ con S_1 el cilindro $x^2+y^2=a^2$ limitado por los planos z=0 y z=h.

- **a.)** Calcular *I* usando coordenadas rectangulares, S_1 : $x = \sqrt{a^2 y^2}$.
- **b.)** Calcular I usando la parametrización $S_1: \boldsymbol{r}(\theta,z) = a\cos\theta\,\widehat{\boldsymbol{i}} + a\sin\theta\,\widehat{\boldsymbol{j}} + z\,\widehat{\boldsymbol{k}}, \ (\theta,z) \in D = [-\pi/2,\pi/2] \times [0,h].$





Ejemplo 6.40 (continuación).

Solución:

a.) Proyectando sobre YZ, S_1 : $x = \sqrt{a^2 - y^2}$. En este caso, $\sqrt{1 + x_y^2 + x_z^2} = \frac{a}{\sqrt{a^2 - y^2}}$

$$\iint_{S_1} \frac{1}{a^2 + z^2} dS = \iint_D \frac{1}{a^2 + z^2} \frac{a}{\sqrt{a^2 - y^2}} dy dz$$

$$= \int_{-a}^a \frac{a}{\sqrt{a^2 - y^2}} dy \int_0^h \frac{1}{a^2 + z^2} dz \quad \text{(la primera integral es impropia),}$$

$$= \lim_{\epsilon \to 0^+} a \operatorname{arcsen} \left(\frac{y}{a}\right) \Big|_{-a + \epsilon}^{a - \epsilon} \cdot \frac{1}{a} \operatorname{arctan} \left(\frac{z}{a}\right) \Big|_0^h = \left(a \frac{\pi}{2} + a \frac{\pi}{2}\right) \frac{1}{a} \operatorname{arctan} \left(\frac{h}{a}\right).$$

b.) En este caso, esta es la manera fácil. Usando la parametrización uno-uno

$$\mathbf{r}(\theta, z) = a\cos\theta \,\hat{\mathbf{i}} + a\sin\theta \,\hat{\mathbf{j}} + z\,\hat{\mathbf{k}}, \ (\theta, z) \in D = [-\pi/2, \pi/2] \times [0, h].$$

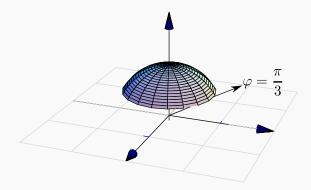
- $r_{\theta} = (-a \operatorname{sen} \theta, a \cos \theta, 0)$
- $r_z = (0, 0, 1)$

$$\iint_{S_1} \frac{1}{a^2 + z^2} dS = \iint_{D} \frac{1}{a^2 + z^2} \left| \left| \frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial z} \right| \right| dz d\theta = \int_{-pi/2}^{\pi/2} \int_{0}^{h} \frac{a}{a^2 + z^2} dz d\theta = \pi \arctan\left(\frac{h}{a}\right).$$

Note que usando la parametrización no tenemos problemas de singularidades.

Ejemplo 6.41

Considere la integral de superficie $I=\iint_{S_1}\ln z\,dS$ con S_1 el casquete de esfera $x^2+y^2+z^2=1$, $\frac{1}{2}\leq z\leq 1$.



.) Colorlar I la managatala discreta de la constanta de la co

a.) Calcular I la parametrización (coordenadas esféricas)

$$S_1: \mathbf{r}(\theta, \varphi) = (\operatorname{sen} \varphi \cos \theta, \operatorname{sen} \varphi \operatorname{sen} \theta, \cos \varphi), \text{ con } (\theta, \varphi) \in [0, 2\pi[\times[0, \pi/3].$$

b.) Calcular *I* usando la parametrización

c.) Calcular I usando coordenadas rectangulares

Solución:

a.) Vamos a usar una parametrización del casquete de la esfera basada en coordenadas esféricas. Observe que los parámetros son θ y φ . En este caso, $\rho = 1$.

$$\begin{cases} x = \sin \varphi \cos \theta \\ y = \sin \varphi \sin \theta \implies \mathbf{r}(\theta, \varphi) = (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi), & \cos (\theta, \varphi) \in [0, 2\pi[\times [0, \pi/3].]] \\ \mathbf{z} = \cos \varphi \end{cases}$$

El valor $\varphi = \pi/3$ se obtiene de resolver $z = 1 \cdot \cos \varphi = \frac{1}{2}$. Luego,

- $r_{\theta} = (-\sin\theta\sin\varphi,\cos\theta\sin\varphi,0)$
- $r_{\varphi} = (\cos\theta\cos\varphi, \cos\varphi\sin\theta, -\sin\varphi)$

Las variabbles de integración son φ y θ , así que debemos sustituir z en el integrando. Para resolver la integral se hace la sustitución $u = \cos \varphi$,

$$\iint_{S_1} \ln z \, dS = \int_0^{2\pi} \int_0^{\pi/3} \ln(\cos \varphi) \sin \varphi \, d\varphi d\theta = -\int_0^{2\pi} \int_1^{\cos \pi/3} \ln(u) \, du \, d\theta = \pi \, (\ln 2 - 1)$$

b.) Como $S_1: x^2+y^2=1-z^2$, con $\frac{1}{2} \le z \le 1$; podemos parametrizar el casquete como

En este caso las variables de integración son $z y \theta$ así que no hay nada que sustituir en la integral,

$$\iint_{S_1} \ln z \, dS = \int_0^{2\pi} \int_{1/2}^1 \ln(z) \cdot 1 \, dz \, d\theta = \pi \left(\ln 2 - 1 \right)$$

Ejemplo 6.41 (continuación).

c.) En coordenadas rectangulares S_1 : $z = \sqrt{1 - x^2 - y^2}$, con $z \in [1/2, 1]$. Entonces la proyección sobre el plano XY está entre las circunferencias $x^2 + y^2 = 3/4$ y $x^2 + y^2 = 1$. Las variables de integración son x e y así que debemos sustituir z en el integrando,

$$\begin{split} \iint_{S_1} \ln z \, dS &= \iint_D \ln(z) \sqrt{1 + z_x^2 + z_y^2} \, dA \\ &= \iint_D \log \left(\sqrt{1 - x^2 - y^2} \right) \sqrt{1 + \frac{x^2 + y^2}{1 - x^2 - y^2}} \, dA, \quad \text{(pasamos a polares),} \\ &= \int_0^{2\pi} \int_{\sqrt{3/4}}^1 \log(\sqrt{1 - r^2}) \frac{r}{\sqrt{1 - r^2}} \, dr \, d\theta \quad \text{(usamos la sustitución } u^2 = 1 - r^2\text{),} \\ &= \pi \, (\ln 2 - 1) \quad \text{(la integral es impropia, se calcula con } u \to 0\text{).} \end{split}$$

6.14 Integral de flujo.

Si F es la densidad de flujo de una corriente de fluido y N es el vector unitario normal a S_1 definido por

$$N = \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \right|},$$

entonces la masa total de fluido que pasa por S_1 por unidad de tiempo en la dirección de N es

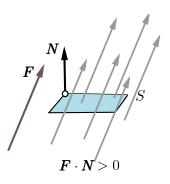
$$\iint_{S_1} \mathbf{F} \cdot \mathbf{N} \, dS = \iint_D \mathbf{F}(\mathbf{r}(u,v)) \cdot \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \right|} \left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \right| \, du \, dv = \iint_D \mathbf{F}(\mathbf{r}(u,v)) \cdot \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \, du \, dv$$

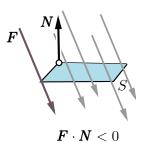
Como consecuencia tenemos que si S: z = f(x,y) con f de clase C^1 sobre \overline{D} , se puede parametrizar S_1 con $\mathbf{r}(x,y) = x \hat{\imath} + y \hat{\jmath} + f(x,y) \hat{k}$ y entonces

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS = \iint_D \mathbf{F}(x, y, z) \cdot (-f_x, -f_y, 1) dx dy$$

Orientación. Nuestra expresión para el flujo total lleva implícita la escongencia de uno de los dos vectores normales unitarios. Escoger un vector unitario para la región S_1 es equivalente a "orientar" la región (como veremos má ade-

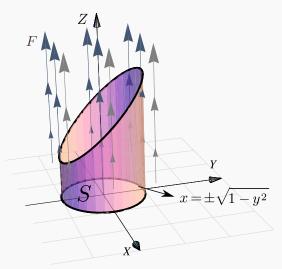
lante). Esta escogencia de N decide el signo de $F \cdot N$. En lo que sigue, siempre vamos a escoger $N = \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left|\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right|\right|}$





Calcular $\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ si $\mathbf{F}(x,y,z) = (z+1) \hat{\mathbf{k}}$ y S_1 el cilindro $x^2 + y^2 = 1$ limitado por el plano z = 2 + y como se ve en la figura.

• Hacer clic en la figura para ver en 3D (en Internet)



Solución: Intuitivamente, el flujo no pasa a través de la superficie S_1 , así que la integral de flujo debería ser 0.

En este caso solo se puede proyectar sobre YZ o XZ. Si proyectamos sobre YZ, S_1 es la unión de dos superficies con ecuaciones $x = \pm \sqrt{1 - y^2}$. Solo hay que notar que en cualquier caso,

$$F(x,y,z)\cdot(1,-x_y,-x_z)=(0,0,z+1)\cdot(1,\pm\frac{y}{\sqrt{1-y^2}},0)=0.$$

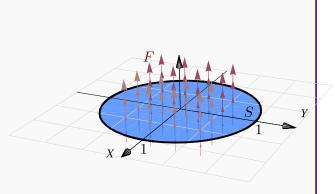
Por lo tanto,

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{N} \, dS = 0.$$

Calcular $\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ si $\mathbf{F}(x,y,z) = (z+1) \hat{\mathbf{k}}$ y S_1 es el círculo $x^2 + y^2 = 1$.

Solución: La superficie S_1 tiene ecuación z=0 y coincide con su proyección D que es el círculo de radio 1. Por lo tanto N=(0,0,1).

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS = \iint_D \mathbf{F}(x, y, z) \cdot (-f_x, -f_y, 1) dx dy$$
$$= \iint_D (0, 0, 1) \cdot (0, 0, 1) dy dx$$
$$= \int_0^{2\pi} \int_0^1 1 r dr d\theta = \pi$$



Ejemplo 6.44

Calcular $\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ si $\mathbf{F}(x,y,z) = (z+1) \, \hat{\mathbf{k}}$ y S_1 es la superficie z=2+y con $x^2+y^2=1$.

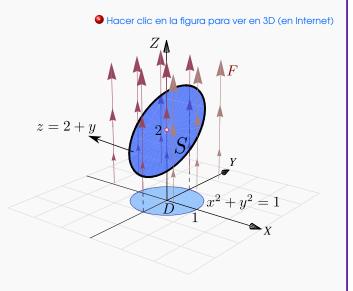
Solución: La superficie tiene ecuación z = 2 + y. D es el círculo de radio 1. Por lo tanto N = (0, -1, 1).

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS = \iint_D \mathbf{F}(x, y, 2 + y) \cdot (-f_x, -f_y, 1) dx dy$$

$$= \iint_D (0, 0, 3 + y) \cdot (0, -1, 1) dy dx$$

$$= \int_0^{2\pi} \int_0^1 (3 + r \operatorname{sen} \theta) r dr d\theta$$

$$= \int_0^{2\pi} \frac{6 + \operatorname{sen}(\theta)}{4} d\theta = 3\pi.$$



6.14.1 Superficies orientables.

Sea S_1 una superficie y $\mathbf{r}(u,v)$ una parametrización de S_1 . Los vectores normales a S, en (u,v), puede escogerse entre los dos vectores unitarios opuestos

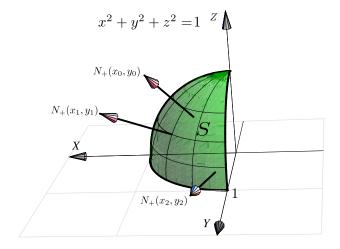
$$\mathbf{N}(u,v) = \pm \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \right|}$$

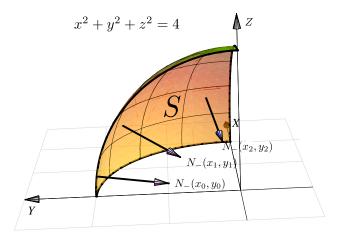
En el caso de que S: z = f(x,y), si $\mathbf{r}(x,y) = x \hat{\imath} + y \hat{\jmath} + f(x,y) \hat{k}$ y entonces

$$\mathbf{N}_{+}(x,y) = \frac{(-f_x, -f_y, 1)}{\sqrt{f_x^2 + f_y^2 + 1}} \text{ y } \mathbf{N}_{-}(x,y) = -\frac{(-f_x, -f_y, 1)}{\sqrt{f_x^2 + f_y^2 + 1}}$$

Si la superficie tiene dos "caras", el signo hace que cada vector normal esté en un lado u otro de la superficie. Este hecho se usa para "orientar" una superficie. Orientar una superficie significa escoger un signo para N, una cara de la superficie es caracterizado N y la otra cara por -N. Como N depende de la parametrización r, es está la que al fin y al cabo orienta la superficie.

En el caso de una esfera, cada vector $N_+(x,y)$ (con signo positivo) apunta al *exterior* y el cada vector $N_-(x,y)$ apunta al interior



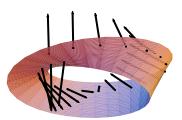


Definición 6.11

Si en cada punto (x,y,z) de la superficie regular S_1 es posible asociar un vector unitario N(x,y,z) de tal manera que como función, N sea continua sobre toda la superficie S, entonces se dice que S_1 es *orientable*.

Como decíamos, la definición supone que la superficie tiene dos lados. Uno de los lados queda determinado por la función continua N(x,y,z) sobre S_1 y el otro lado por la normal de signo contrario.

Hay superficies de una sola cara, como la banda de Möbius, que no son orientables. En la figura que sigue tenemos una banda de Möbius. Note que la escogencia de N no orienta la banda, es decir, si escogemos uno de los N, la presencia de estos vectores N "arriba" y "abajo" de la banda, muestran que hay una sola cara.



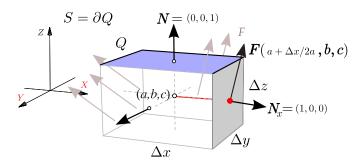
En las integrales de flujo que hemos calculado, hemos usado el vector normal unitario fundamental N_+ . No siempre este es el vector que se elige para los cálculos. Algunos teoremas requieren superficies orientadas con vectores normales unitarios hacia *el exterior*.

Convenio para superficies cerradas. En el caso de superficies cerradas, se conviene en que si *N* apunta hacia afuera, esta es *"la orientación positiva"* y si *N* apunta hacia adentro, esta es *"la orientación negativa"*.

6.15 Teorema de la Divergencia.

Ahora nos interesa analizar el flujo de un campo vectorial $\mathbf{F}(x,y,z) = (P,Q,R)$ continuamente diferenciable, a través de la frontera $S = \partial Q$ de un sólido simple Q, en la dirección del vector normal unitario *exterior* a ∂Q . El flujo total se puede separar entre el flujo que entra al sólido y el flujo que sale, en cada cara del sólido el flujo podría ser distinto.

En un caso sencillo, se toma un cubo Q centrado en (a,b,c) con aristas paralelas a los ejes. Calcular el flujo sobre $S = \partial Q$ requiere calcular el flujo sobre cada una de las caras.



En la cara que contiene al punto $(a + \Delta x/2, b, c)$ (punto rojo en la figura anterior) la estimación del flujo total $\mathbf{F}t_{x+}$ sería

$$Ft_{x+} \approx \mathbf{F}(a + \Delta x/2, b, c) \cdot (1,0,0) \Delta y \Delta z = P(a + \Delta x/2, b, c) \Delta y \Delta z$$

En la cara (opuesta) que contiene al punto $(a - \Delta x/2, b, c)$ la estimación del flujo total Ft_{x-} sería

$$Ft_{x-} \approx \mathbf{F}(a + \Delta x/2, b, c) \cdot (-1, 0, 0) \Delta y \Delta z = -P(a - \Delta x/2, b, c) \Delta y \Delta z$$

Luego el flujo total estimado en ambas caras sería,

$$Ft_{x+} + Ft_{x-} \approx [P(a + \Delta x/2, b, c) - P(a - \Delta x/2, b, c)] \Delta y \Delta z = \frac{\partial P}{\partial x}(a, b, c) \Delta x \Delta y \Delta z \text{ si } \Delta x \approx 0$$

De manera similar, si ΔV es el volumen de la caja, el flujo total en las caras paralelas a los planos y=0 y z=0sería aproximadamente $\frac{\partial Q}{\partial y}(a,b,c)\Delta V$ y $\frac{\partial R}{\partial y}(a,b,c)\Delta V$, respectivamente.

Así, el flujo total a través de $S = \partial Q$ con vector normal exterior, sería aproximadamente

$$\left(\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial y}\right)\Big|_{(a,b,c)} \Delta V$$

Así, el flujo total que pasa a través de la frontera de una pequeña caja de centro (a,b,c) es un escalamiento del volumen, el factor de escalamiento $\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial y}$, evaluado en el centro, se llama *divergencia*.

Definición 6.12

La divergencia del campo vectorial $\mathbf{F} = (P, Q, R)$ es el campo escalar

$$div \mathbf{F} = \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial y}$$

Si F es continuamente diferenciable, **div** F es continuo y si Q_i es una caja de diámetro pequeño, entonces

$$m{div}\, \mathbf{F}\, \Delta V pprox \iiint_{\mathbf{Q}_i} m{div}\, \mathbf{F}\, dV$$

Pero como $div F \Delta V$ es aproximadamente el flujo total a través de la frontera de Q_i , en la dirección del vector normal exterior, entonces

$$\iiint_{Q_i} div \, \mathbf{F} \, dV \approx \iint_{\partial Q_i} \mathbf{F} \cdot \mathbf{N} \, dA$$

La generalización es llamada el Teorema de la divergencia o Teorema de Gauss.

Teorema 6.6 ((Teorema de la Divergencia).

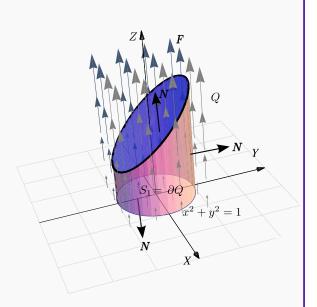
Sea Q un sólido limitado por una superficie orientable S_1 y sea N la normal unitaria siempre exterior a S_1 . Si Fes un campo vectorial de clase C^1 sobre Q entonces

$$\iiint_{O} div \mathbf{F} dV = \iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$$

donde $\operatorname{div} \mathbf{F} = P_x + Q_y + R_z \text{ si } \mathbf{F} = (P, Q, R).$

Calcular $\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ si $\mathbf{F}(x,y,z) = (z+1) \hat{\mathbf{k}}$, S_1 es la frontera del sólido Q limitado por el cilindro $x^2 + y^2 = 1$, el plano z = 2 + y y z = 0, como se ve en la figura, y \mathbf{N} es el vector unitario siempre exterior a Q.

Solución: En vez de calcular la integral sobre cada una de las tres superficies que conforman la frontera de Q (ver los ejemplos 6.43, 6.44 y 6.42), usamos el teorema de la divergencia.



- F(x,y,z) = (0,0,z+1).
- div F = 0 + 0 + 1 = 1.

Proyectando sobre el plano XY y usando coordenadas cilíndricas, tenemos

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS = \iiint_{Q} \mathbf{div} \mathbf{F} dz dy dx$$

$$= \iint_{D} \int_{0}^{2+y} 1, dz dy dx$$

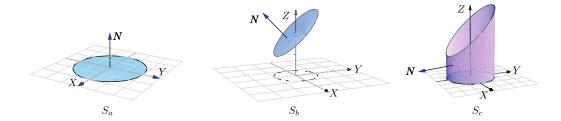
$$= \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{2+r \operatorname{sen} \theta} 1 r dz dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (2 + r \operatorname{sen} \theta) r dr d\theta$$

$$= \int_{0}^{2\pi} r^2 + \frac{r^3 \operatorname{sen}(\theta)}{3} \Big|_{0}^{1} d\theta$$

$$= \int_{0}^{2\pi} 1 + \frac{\operatorname{sen}(\theta)}{3} d\theta = 2\pi$$

La importancia de que N se exterior a Q. Consideremos los ejemplos 6.43, 6.44 y 6.42. El cálculo de la integral de flujo se hizo siempre con $N = (-f_x, -f_y, 1)$. Pero este vector no siempre es exterior a Q. En el caso de la superficie S_a (figura siguiente), este vector *no es exterior*.

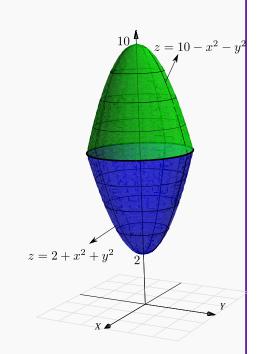


El resultado es
$$\iint_{S_1} \boldsymbol{F} \cdot \boldsymbol{N} \, dS = \iint_{S_1} \boldsymbol{F} \cdot \boldsymbol{N} \, dS + \iint_{S_2} \boldsymbol{F} \cdot \boldsymbol{N} \, dS + \iint_{S_3} \boldsymbol{F} \cdot \boldsymbol{N} \, dS = \pi + 3\pi + 0 \neq \iiint_{Q} \operatorname{div} \boldsymbol{F} \, dz dy dx = 2\pi$$

Calcular $\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ si $\mathbf{F}(x,y,z) = x \, \hat{\mathbf{i}} + y \, \hat{\mathbf{j}} + z \, \hat{\mathbf{k}}$ y S_1 es la frontera del sólido Q comprendido entre las superficies $z = 10 - x^2 - y^2$ y $z = 2 + x^2 + y^2$, y \mathbf{N} es el vector normal unitario siempre exterior a Q.

- F(x,y,z) = (x,y,z) y **div** F = 1 + 1 + 1 = 3. Solución: Podemos usar el teorema de la divergencia.
- ullet La proyección del sólido sobre el plano xy es un círculo de radio 2 pues

$$z = 10 - x^2 - y^2 \cap z = 2 + x^2 + y^2 \implies 4 = x^2 + y^2$$
.



Usando coordenadas cilíndricas obtenemos,

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS = \iiint_{Q} \mathbf{div} \mathbf{F} dz dy dx$$

$$= \iint_{D} \int_{2+x^2+y^2}^{10-x^2-y^2} 3 dz r dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{2} \int_{2+r^2}^{10-r^2} 3r dz dr d\theta = 48\pi$$

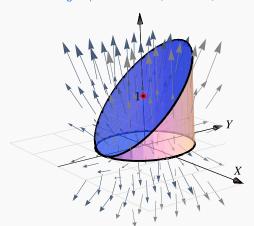
Calcular $\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ si $\mathbf{F}(x,y,z) = y \cos x \, \hat{\mathbf{i}} + \frac{1}{2} y^2 \sin x \, \hat{\mathbf{j}} + z \, \hat{\mathbf{k}}$ y S_1 es la frontera del sólido Q comprendido entre las superficies z = 1 + y, $x^2 + y^2 = 1$ y z = 0, y \mathbf{N} es el vector normal unitario siempre exterior a Q.

Solución: Podemos usar el teorema de la divergencia. La proyección del sólido sobre el plano XY es un círculo $x^2 + y^2 = 1$.

• $div F = -y \sin x + y \sin x + 1 = 1$.

$$\begin{split} \iint_{S_1} \mathbf{F} \cdot \mathbf{N} \, dS &= \iiint_{Q} \mathbf{div} \mathbf{F} \, dz dy dx \\ &= \iint_{D} \int_{0}^{1+y} 1 \, r \, dz \, dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{1+r \, \mathrm{sen} \, \theta} r \, dz \, dr \, d\theta = \int_{0}^{2\pi} \int_{0}^{1} (1 + r \, \mathrm{sen} \, \theta) r \, dr d\theta = \pi \end{split}$$

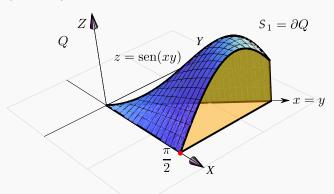
• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 6.48

Sea Q el sólido limitado por las superficies $S_a: z = \operatorname{sen}(xy), S_b: x = \frac{\pi}{2}$ y $S_c: y = x$. Sea S_1 la frontera del sólido Q y N el vector normal unitario y exterior a Q. Calcule $\iiint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ si $\mathbf{F} = \left(\frac{x^3}{3}, z, yx\right)$.

• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 6.48 (continuación)

Solución: Podemos usar el teorema de la divergencia. La proyección del sólido sobre el plano XY es el triángulo $0 \le x \le \pi/2$ y $0 \le y \le x$.

• *div* $F = x^2$

$$\begin{split} \iint_{S_1} \mathbf{F} \cdot \mathbf{N} \, dS &= \iiint_{Q} \mathbf{div} \mathbf{F} \, dz dy dx \\ &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{x} \int_{0}^{\mathrm{sen}(xy)} x^2 \, dz dy dx \\ &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{x} x^2 \, \mathrm{sen}(xy) dy dx \\ &= \int_{0}^{\frac{\pi}{2}} x - x \cos\left(x^2\right) dx = \frac{1}{8} \left(\pi^2 - 4 \operatorname{sen}\left(\frac{\pi^2}{4}\right)\right) \end{split}$$

6.16 Teorema de Stokes (Teorema de Green en el espacio).

Rotacional de un campo vectorial. Sea F = (P, Q, R) entonces el rotacional de F es

$$\mathbf{rot} \mathbf{F} = \begin{vmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = (R_y - Q_z, P_z - R_x, Q_x - P_y).$$

El gradiente, la divergencia y el rotacional se puede expresar en términos del operador "nabla",

$$\nabla = \left(\frac{\partial}{\partial y'}, \frac{\partial}{\partial y'}, \frac{\partial}{\partial y}\right)$$

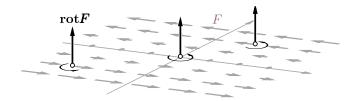
Este operador lo aplicamos como si fuera un vector. De esta manera,

$$\nabla f = \left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) f = \left(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial y}\right)$$

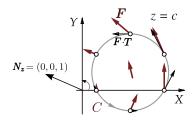
$$\nabla \cdot \mathbf{F} = \left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) (P, Q, R) = \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial y}$$

$$\nabla \times \mathbf{F} = \left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) \times (P, Q, R) = (R_y - Q_z, P_z - R_x, Q_x - P_y)$$

Circulación y vorticidad. La "vorticidad" es la tendencia de un fluido que se mueve a girar un objeto que es arrastrado por este fluido.



La "circulación" es el movimiento total del fluido a medida que viaja a lo largo de una curva. La circulación de un fluido sobre una circunferencia C en un plano z=c se mide con la componente tangencial de F, es decir, se mide con $F \cdot T$ donde $T = \frac{r'(t)}{||r'(t)||}$.



El "movimiento total" del fluido sobre C se obtiene integrando respecto a la longitud de arco,

circulación =
$$\int_C \mathbf{F} \cdot \mathbf{T} ds = \int_C \mathbf{F} \cdot d\mathbf{r}$$

Si la circunferencia es C: $\mathbf{r}(t) = (a + r\cos t)\,\mathbf{\hat{\imath}} + (a + r\sin t)\,\mathbf{\hat{\jmath}} + c\,\mathbf{\hat{k}}\,$ con $t \in [0,2\pi]$ y si $\mathbf{F}(x,y,z) = (-ky,0,0)$, entonces $\mathbf{rot}\,\mathbf{F} = (0,0,k)$ y

circulación =
$$\int_C \mathbf{F} \cdot d\mathbf{r} = k\pi r^2 = \mathbf{rot} \mathbf{F} \cdot \mathbf{N}_z A_{\text{círculo}}$$

Sobre un cuadrado tenemos algo parecido. Sea C la frontera de un cuadrado, orientada contrareloj, en el plano z=c. Supongamos que cada uno de sus lados miden L y que estos lados son paralelos a los ejes. Como antes $\mathbf{F}=(-ky,0,0)$. En este caso, $\mathbf{F}\cdot\mathbf{T}=0$ en loa lados paralelos al eje Y, En el lado de arriba (y=b+L) la velocidad tangencial es k(b+L) y el lado de abajo (y=b) la velocidad tangencial es -kb; por lo tanto,



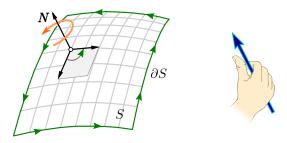
circulación =
$$k(b+L)L - kbL = kL^2 = rot \mathbf{F} \cdot \mathbf{N}_z A_{\text{cuadrado}}$$

Con un (buen poco) de esfuerzo, podemos calcular la circulación de \mathbf{F} a através de la frontera de rectángulos en los otros planos y generalizar este *comportamiento local* para llegar a la conclusión de que si S_1 es una superficie orientada, entonces

circulación de \mathbf{F} a través de ∂S_1 = Flujo de $\mathbf{rot} \mathbf{F}$ a través de S_1

$$\int_{\partial S_1} F \cdot \mathbf{T} ds = \iint_{S_1} \mathbf{rot} \mathbf{F} \cdot \mathbf{N} dS = \iint_D \text{"circulación microscópica de } \mathbf{F} \cdot \mathbf{M} dS$$

Orientación positiva de $C = \partial S_1$ **respecto a** N. El teorema de Stokes (o de Green el el espacio) requiere que la curva esté orientada "positivamente", esto significa que la orientación de la curva debe ser tal que gire contra-reloj respecto al vector normal unitario N/|N|.



Orientación positiva respecto a N

Teorema 6.7 (Teorema de Stokes).

Sea S_1 una superficie orientable, regular a trozos y limitada por una curva $C = \partial S_1$, cerrada y regular a trozos. Si $\mathbf{F} = (P, Q, R)$ es de clase C^1 sobre S_1 y si \mathbf{N} es elegido de tal manera que C tiene orientación positiva, entonces

$$\int_{C} F \cdot d\mathbf{r} = \iint_{S_{1}} \mathbf{rot} \, \mathbf{F} \cdot \mathbf{N} \, dS$$

El teorema de Stokes se puede extender a dos o más curvas cerradas.

Ejemplo 6.49

Sea S_1 la superficie de ecuación z=2 definida sobre el círculo $D=\{x^2+y^2\leq 4\}$, tal y como se muestra en la figura. La curva C es la frontera de S_1 . Una parametrización para C es

$$r(t) = \underbrace{2\cos t}_{x(t)} i + \underbrace{2\operatorname{sen} t}_{y(t)} j + \underbrace{2}_{z(t)} k, \ t \in [0, 2\pi]$$

Si
$$F(x,y,z) = 3y i - xz j + yz^2k$$
,

- **a.)** calcular $\int_C F \cdot d\mathbf{r}$ usando la definición de integral de línea,
- **b.)** utilice el Teorema de Stokes para calcular $\int_C F \cdot d\mathbf{r}$.

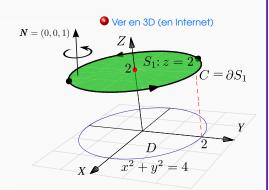
Solución:

a.) Por definición de integral de línea.

$$\int_{C} F \cdot d\mathbf{r} = \int_{C} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{0}^{2\pi} (3 \cdot 2 \operatorname{sen} t, -(2 \cos t)(2), (2 \operatorname{sen} t)(2)^{2}) \cdot (-2 \operatorname{sen} t, 2 \cos t, 0) dt$$

$$= \int_{0}^{2\pi} -12 \operatorname{sen}^{2} t - 8 \cos^{2} t dt = -20\pi$$



Ejemplo 6.49 (continuación).

b.) La superficie es S: z=2 y la proyección es el círculo $x^2+y^2=4$. El vector \mathbf{N} se debe tomar de acuerdo a la regla de la mano derecha: $\mathbf{N}=\frac{(-z_x,-z_y,1)}{||(-z_x,-z_y,1)||}=(0,0,1)$. Luego, $\mathbf{rot}\,\mathbf{F}=(x+z^2,0,-3-z)$, entonces,

$$\int_{C} F \cdot d\mathbf{r} = \iint_{S} \mathbf{rot} \, \mathbf{F} \cdot \mathbf{N} \, dS = \iint_{R_{xy}} (x + z^{2}, 0, -3 - z) \cdot (0, 0, 1) \, dA = \iint_{R_{xy}} -3 - z \, dA$$

$$= \iint_{R_{xy}} -5 \, dA, \text{ pues } S : z = 2$$

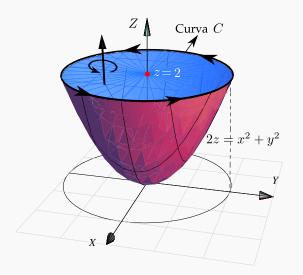
$$= \int_{0}^{2\pi} \int_{0}^{2} -5r \, dr \, d\theta = -20\pi$$

Ejemplo 6.50

Utilice el teorema de Stokes para calcular $\int_C \mathbf{F} \cdot d\mathbf{r}$ donde $\mathbf{F}(x,y,z) = 3y\mathbf{i} - xz\mathbf{j} + yz^2\mathbf{k}$ y C es la curva de intersección entre el paraboloide $2z = x^2 + y^2$ y el plano z = 2, tal y como se muestra en la figura.

Solución: ¿Cuál superficie escoger, el paraboloide o el plano?. De acuerdo al Teorema de Stokes, se puede escoger cualquiera de las dos. La más simple es el plano z=2.

Si S: z-2=0 entonces $N=\pm(0,0,1)$. ¿Cuál signo se escoge?. Las integrales $\int_C \mathbf{F} \cdot d\mathbf{r}$ y $\iint_{S_1} \mathbf{rot} \, \mathbf{F} \cdot \mathbf{N} \, dS$ tienen el mismo valor si N se escoge de acuerdo a la regla de la mano derecha (sino, difieren en el signo), en este caso particular y de acuerdo a la orientación de C, el que se debe escoger es N=(0,0,1).



$$\int_{C} F \cdot d\mathbf{r} = \iint_{S_{1}} \mathbf{rot} \mathbf{F} \cdot \mathbf{N} dS$$

$$= \iint_{R_{xy}} (z^{2} + x, 0, -z - 3) \cdot (0,0,1) dA,$$

$$= \int_{0}^{2\pi} \int_{0}^{2} (-z - 3) r dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} (-2 - 3) r dr d\theta = -10 \theta \Big|_{0}^{2\pi} = -20\pi.$$

Sea F(x,y,z) = (x+y, 2x-z, y+z) y S_1 la porción del plano 3x + 2y + z = 6 en el primer octante. Sea C la frontera de la superficie S_1 . Calcular $\int_C \mathbf{F} \cdot d\mathbf{r}$.

Solución: La ecuación de la superficie S_1 es z = 6 - 3x - 2y. El vector normal adecuado para que se cumpla la identidad del teorema de Stokes es $N = (-z_x, -z_y, 1) = (3,2,1)$, como se ve en la figura. Observe que no necesitamos hacerlo unitario por la cancelación de normas en la integral de superficie.

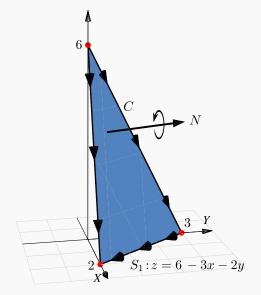
• rot F = (2,0,1).

$$\int_{C} F \cdot d\mathbf{r} = \iint_{S_{1}} \mathbf{rot} F \cdot \frac{\mathbf{N}}{||\mathbf{N}||} dS$$

$$= \iint_{D} (2,0,1) \cdot (3,2,1) \, dy dx$$

$$= \int_{0}^{2} \int_{0}^{3-3/2x} 7 \, dy dx = 21.$$

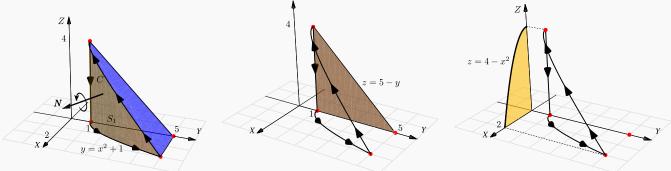
• Hacer clic en la figura para ver en 3D (en Internet)



Ejemplo 6.52

Calcular $\int_C F \cdot d\mathbf{r}$ si $\mathbf{F}(x,y,z) = (yz,x,z^2)$. C es la frontera de la superficie $S_1: y=x^2+1$ limitada porlos planos z=5-y y z=0, como se ve en la figura.

• Hacer clic en la figura para ver en 3D (en Internet)



Solución: Vamos a resolver el problema de dos maneras: Proyectando S_1 sobre XZ y proyectando S_1 sobre YZ.

Ejemplo 6.52 (continuación).

Proyectando S_1 **sobre el plano** XZ. Como $S_1: y=1+x^2$, un vector normal es $N(x,y,z)=\pm(-y_x,1,-y_z)$. El normal adecuado es $N(x,y,z)=(y_x,-1,y_z)=(2x,-1,0)$. En la figura aparece el vector N(1,2,2)=(2,-1,0). **rot** F=(0,y,1-z).

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S_{1}} \mathbf{rot} \, \mathbf{F} \cdot \frac{N}{||N||} \, dS$$

$$= \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} (0, y, 1-z) \cdot (2x, -1, 0) \, dz dx$$

$$= \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} -y \, dz \, dx$$

$$= \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} -x^{2} - 1 \, dz \, dx = -48/5.$$

Proyectando S_1 **sobre el piano** YZ. Como S_1 : $x = \sqrt{1-y}$, un vector normal es $N(x,y,z) = \pm (1,-x_y,-x_z)$. El normal adecuado es $N(x,y,z) = \left(1,\frac{-1}{2\sqrt{y-1}},0\right)$. **rot** F = (0,y,1-z).

$$\int_{C} F \cdot d\mathbf{r} = \iint_{S_{1}} \mathbf{rot} \, \mathbf{F} \cdot \frac{N}{||N||} \, dS$$

$$= \int_{1}^{5} \int_{0}^{5-y} (0, y, 1-z) \cdot \left(1, \frac{-1}{2\sqrt{y-1}}, 0\right) dz dy$$

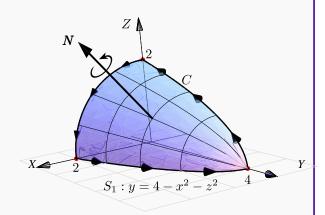
$$= \int_{1}^{5} \int_{0}^{5-y} -\frac{y}{2\sqrt{y-1}} dz dy = -48/5.$$

Ejemplo 6.53

• Hacer clic en la figura para ver en 3D (en Internet)

Sea $S_1: y=4-x^2-z^2$ en el primer octante y $C=\partial S_1$. Calcular $\int_C F \cdot d\mathbf{r}$ si $\mathbf{F}(x,y,z)=(xy,z,y)$

Solución: La ecuación de la superficie S_1 es $y = 4 - x^2 - z^2$. Vamos a proyectar sobre el plano XZ. El vector normal adecuado para que se cumpla la identidad del teorema de Stokes es $\mathbf{N}(x,y,z) = (-y_x,1,-y_z) = (2x,1,2z)$. Para ver esto, tome un punto de la superficie S, digamos (1,2,1). En este caso N(1,2,1) = (2,1,2). Al trasladarlo a la superficie, vemos que es el vector adecuado.



Ejemplo 6.53 (continuación).

• rot F = (0,0,-x).

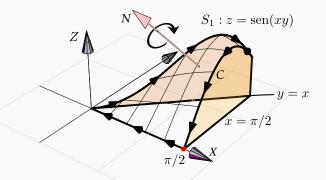
$$\int_{C} F \cdot d\mathbf{r} = \iint_{S_{1}} \mathbf{rot} F \cdot \frac{N}{||N||} dS$$

$$= \iint_{D} (0,0,-x) \cdot (2x,1,2z) dz dx$$

$$= \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} -2xz dz dx = -4.$$

Ejemplo 6.54

Sea Q el sólido limitado por las superficies $S_1: z = \operatorname{sen}(xy), S_2: x = \frac{\pi}{2} \text{ y } S_3: y = x$. Calcule $\int_C F \cdot d\mathbf{r}$ si $\mathbf{F} = (z, x, x)$ y C es la frontera de la superficie S_1 .



• Hacer clic en la figura para ver en 3D (en Internet)

Solución: Como $S_1: z = \text{sen}(xy)$, entonces $N_+(x,y,z) = (-y\cos(xy), -x\cos(xy), 1)$. Tomamos un punto de la superficie, digamos (1,1,sen(1)), en la figura de arriba se muestra el vector $N_+(1,1,\text{sen}(1))$ (trasladado) se nota que la curva C no está orientada positivamente, así que debemos tomar $N_- = (y\cos(xy), x\cos(xy), -1)$.

Ahora, $\operatorname{rot} F = (0,0,1)$; proyectamos sobre el plano XY, la región de integración es el triángulo $0 \le x \le \pi/2$ y $0 \le y \le x$.

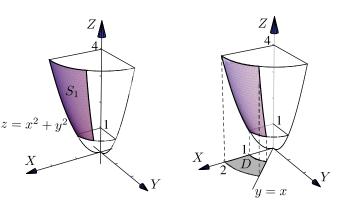
$$\int_{C} F \cdot d\mathbf{r} = \iint_{S_{1}} \mathbf{rot} \mathbf{F} \cdot \mathbf{N} dS$$

$$= \int_{0}^{\pi/2} \int_{0}^{x} (0,0,1) \cdot (y\cos(xy), x\cos(xy), -1) dy dx$$

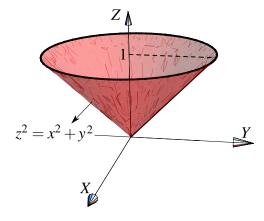
$$= \int_{0}^{\pi/2} \int_{0}^{x} -1 dy dx = \frac{\pi^{2}}{8}$$

EJERCICIOS

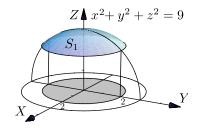
6.14 Determine el área de la superficie S_1 de ecuación $z=x^2+y^2$ que se encuentra limitada por los planos z=4, z=1, y=x y el plano y=0, tal $z=x^2+y$ como se muestra en la figura



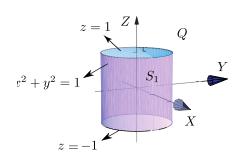
6.15 Sea S la superficie del cono $z^2 = x^2 + y^2$ comprendida entre z = 0 y z = 1. Usando integral de superficie, calcular el área de la superficie S.



6.16 Calcule $I = \iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ donde \mathbf{F} es el campo vectorial dado por $\mathbf{F}(x,y,z) = y\,\hat{\mathbf{i}} - x\,\hat{\mathbf{j}} + 8z\,\hat{\mathbf{k}}$ y S_1 la parte de la esfera de ecuación $x^2 + y^2 + z^2 = 9$ que se encuentra dentro del cilindro $x^2 + y^2 = 4$, como se observa en la figura.

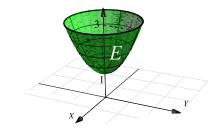


6.17 Calcule $\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ si $\mathbf{F}(x,y,z) = xy^2 \, \hat{\mathbf{i}} + x^2y \, \hat{\mathbf{j}} + y \, \hat{\mathbf{k}}$, \mathbf{N} es el vector normal unitario exterior a S_1 y S_1 es la superficie dada por $S = S_a \cup S_b \cup S_c$ donde S_a, S_b, S_c son las tres superficies frontera del sólido Q limitado por $x^2 + y^2 = 1$, z = 1 y z = -1 como se ve en la figura



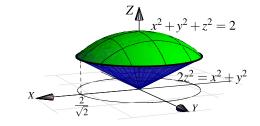
6.18 Sea $\mathbf{F}(x,y,z) = \operatorname{sen}(yz) \hat{\mathbf{i}} + xz \cos(yz) \hat{\mathbf{j}} + (xy \cos(yz) + e^z) \hat{\mathbf{k}}$.

- a) Verifique que F es conservativo
- **b)** Encuentre una función potencial para **F**.
- c) Calcule la integral $\int_C F \cdot d\mathbf{r}$ donde C es la curva que une los puntos (0,0,0) y $(2,1/2,\pi)$.
- d) Calcule $\int_C F \cdot d\mathbf{r}$ donde C es la curva que resulta de intersecar la esfera $x^2 + y^2 + z^2 = 4$ con el plano y + z = 2.
- **6.19** Calcular $\iint_E \mathbf{F} \cdot \mathbf{N} dS$ donde $\mathbf{F}(x,y,z) = x \, \hat{\mathbf{i}} + y \, \hat{\mathbf{j}} + z \, \hat{\mathbf{k}}$ y E es la superficie de ecuación $z = 1 + x^2 + y^2$, con $1 \le z \le 3$, tal y como se muestra en la figura.

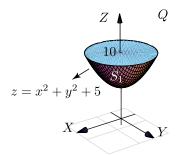


6.20 Sea E la frontera del sólido Q limitado por la esfera $x^2+y^2+z^2=2$ y el cono $2z^2=y^2+x^2$, tal y como se muestra en la figura.

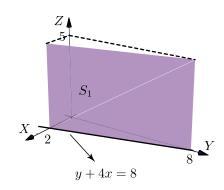
Si
$$\mathbf{F}(x,y,z) = xz \; \hat{\mathbf{i}} + x \arctan(xz) \; \hat{\mathbf{j}} + \frac{z^2}{2} \; \hat{\mathbf{k}}$$
, calcular $\iint_E \mathbf{F} \cdot \mathbf{N} dS$.



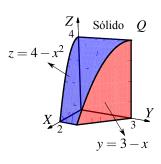
6.21 Use el teorema de la divergencia para calcular $\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS$ donde S_1 es la frontera del sólido Q, en el primer octante, limitado por la superficie $z = x^2 + y^2 + 5$ y el plano z = 10 y N es el normal exterior unitario a la superficie y $\mathbf{F}(x,y,z) = 2x\,\hat{\mathbf{i}} + y\,\hat{\mathbf{j}} + z\,\hat{\mathbf{k}}$.



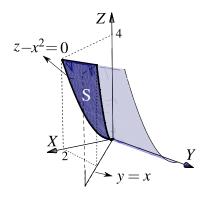
6.22 Calcule $\iint_{S_1} x^2 - 2y + z dS$ donde S_1 es la superficie de la figura.



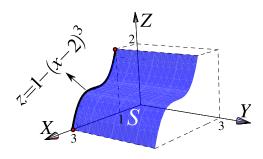
6.23 Sea $F(x,y,z) = (x + \text{sen}(y)) \hat{\imath} + (\ln(xz) - y) \hat{\jmath} + (2z + \arctan(xy)) \hat{k}$ Calcule la integral de superficie $\iint_{\mathcal{S}} F \cdot N dS$ donde S está formado por las caras del sólido Q; tomando para cada cara, el vector normal externo al sólido.



6.24 La superficie S es el trozo del cilindro $z - x^2 = 0$ que está limitado por los planos y = 0, y = x y z = 4, en el primer octante. La Superficie S se muestra en la figura que sigue. Calcule el área de S.

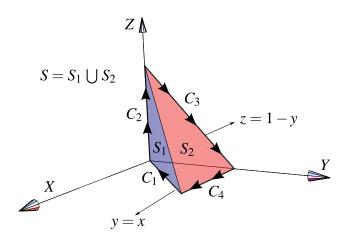


6.25 Considere el campo de fuerzas $\mathbf{F}(x,y,z) = (0, x+y, z)$. Calcule la integral de superficie $\iint_{\mathbf{S}} \mathbf{F} \cdot \mathbf{N} d\mathbf{S}$, donde \mathbf{S} es el trozo de cilindro de ecuación $z = 1 - (x-2)^3$ que está limitado por los planos y = 0, y = 3, z = 1 y z = 2 tal y como se muestra en la figura

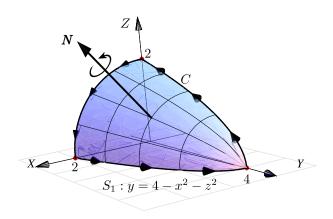


6.26 Sea $\mathbf{F}(x,y,z) = -y^2 \, \hat{\imath} + z \, \hat{\jmath} + x \, \hat{k}$. Consideremos la superficie de la figura, $S = S_1 \cup S_2$ y la curva $C = C_1 + C_2 + C_3 + C_4$ el borde de la superficie S.

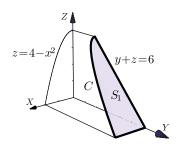
- a) Calcular $\int_{\mathbb{C}} F \cdot dr$ usando la definición de integral de línea.
- b) Calcular la integral de superficie $\iint_{S} rot F \cdot NdS$



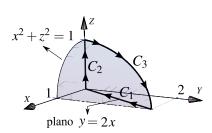
6.27 Use el teorema de Stokes para calcular $\int_C F \cdot d\mathbf{r}$ donde $\mathbf{F}(x,y,z) = x^2 \hat{\mathbf{i}} + xy \hat{\mathbf{j}} + z^2 \hat{\mathbf{k}}$ y C es la frontera de la porción del paraboloide $y = 4 - x^2 - z^2$ que se encuentra en el primer octante, como se muestra en la figura



6.28 Sea $\mathbf{F}(x,y,z) = 2yz \,\hat{\mathbf{i}} - 4x \,\hat{\mathbf{j}} - 3z^2 \,\hat{\mathbf{k}}$, y sea C la curva que se obtiene al intersecar la superficie $z = 4 - x^2$ con el plano y + z = 6, tal y como se muestra en la figura. Calcular $\int_C \mathbf{F} \cdot d\mathbf{r}$.

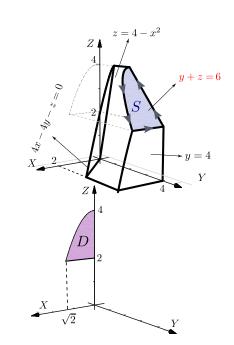


6.29 Sea $F(x,y,z)=(x^2-y,\,yz-x,\,x+2y)$. Calcule la integral de línea $\int_{\pmb{C}} \pmb{F} \cdot \pmb{dr}$, donde \pmb{C} es la curva que se muestra en la figura de la derecha.

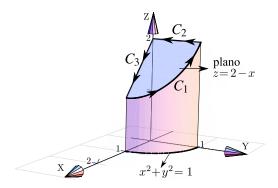


6.30 Sea Q el sólido limitado por y+z=6, 4x-4y-z=0, $z=4-x^2$, z=0 y x=0, tal y como se muestra en la figura.

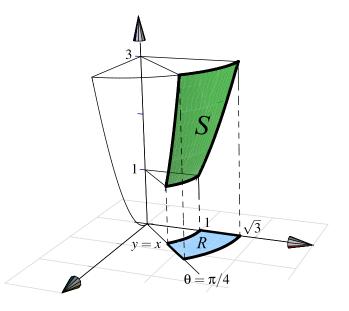
- a) Calcular $\int_C {m F}\cdot d{m r}$ si ${m F}(x,y,z)=(x,x,z)$ y C es la frontera de la superficie S_1 en la figura.
- **b)** Calcular $\iint_{\partial Q} \mathbf{F} \cdot \mathbf{N} dS$ donde $\mathbf{F}(x,y,z) = (x,y,z)$, ∂Q es la frontera del sólido Q y \mathbf{N} es el vector vector normal unitario exterior.



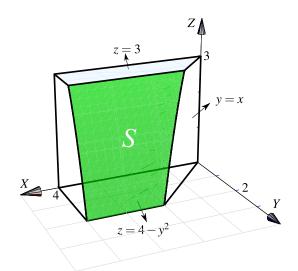
6.31 Sea $F(x,y,z)=(x+z,\,2y,\,y-z)$. Calcule la integral de línea $\int_{\pmb{C}} \pmb{F} \cdot \pmb{dr}$, donde $\pmb{C}=\pmb{C}_1+\pmb{C}_2+\pmb{C}_3$ tal y como se muestra en la figura de la derecha.



6.32 Determine el área de la superficie S de ecuación $z = x^2 + y^2$ que se encuentra limitada por los planos z = 1, z = 3, y = x y el plano x = 0, tal y como se muestra en la figura.



6.33 Sea F(x,y,z)=(xy,x,z+1) y sea ${\bf S}$ la porción de superficie de ecuación $z=4-y^2$ limitada por las superficies z=3, x=4, z=0 y x=y, tal y como se muestra en la figura de la derecha. Calcular $\iint_{{\bf S}} {\bf F} \cdot {\bf N} \, d{\bf S}$.



Versión más reciente (y actualizaciones) de este libro:

http://www.tec-digital.itcr.ac.cr/revistamatematica/Libros/http://dl.dropbox.com/u/57684129/revistamatematica/Libros/index.html

Apéndice A

Más sobre cónicas

En esta sección vamos a ver que la manera práctica de identificar la cónica de ecuación (1.5), con todos sus elementos. También vamos ver teoría de *invariantes*. Usando esta teoría podemos identificar la cónica, sin atender a sus elementos, directamente aplicando el siguiente teorema,

Teorema A.1

Consideremos la ecuación general $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. Entonces,

a) si
$$B^2-4AC=0$$
 y $4ACF+BDE-AE^2-CD^2-FB^2\neq 0$, tenemos una parábola,

b) si
$$B^2 - 4AC < 0$$
 y $(A + C)(4ACF + BDE - AE^2 - CD^2 - FB^2) < 0$, tenemos una elipse,

c) si
$$B^2 - 4AC > 0$$
 y $4ACF + BDE - AE^2 - CD^2 - FB^2 \neq 0$, tenemos una hipérbola.

Si definitivamente se sabe que la ecuación general corresponde a una cónica propia, entonces

a) si
$$B^2 - 4AC = 0$$
, tenemos una parábola,

b) si
$$B^2 - 4AC < 0$$
, tenemos una elipse,

c) si
$$B^2 - 4AC > 0$$
, tenemos una hipérbola.

A.1 Preliminares: Traslación y rotación de ejes.

*

Traslación del origen. Sea P con coordenadas (x,y) en el sistema estándar XY. Nos interesa las coordenadas de P en un nuevo sistema X'Y' con ejes paralelos a los ejes X e Y. Si el nuevo sistema tiene su origen en el punto (h,k) (en coordenadas estándar), el punto P tendrá coordenadas

$$P = (x', y') = (x - h, y - k)$$

en el nuevos sistema. Así, la transformación de coordenadas, para pasar del sistema XY al sistema XY', es

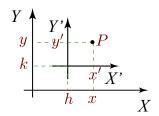


Figura A.1

$$\begin{cases} x = x' + h \\ y = y' + k \end{cases}$$
 (A.1)

Si aplicamos este cambio de variable a la ecuación general

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0,$$

obtenemos

$$Ax'^{2} + Bx'y' + Cy'^{2} + (D + 2Ah + Bk)x' + (A + Bh + 2Ck)y' + Dh + Ah^{2} + Ek + Bhk + Ck^{2} + F = 0.$$

Cónicas centrales. Para eliminar la traslación en el eje X' y la traslación en el eje Y', debemos tomar h y k de tal manera que

$$\begin{cases}
D+2Ah+Bk = 0, \\
A+Bh+2Ck = 0.
\end{cases}$$
(A.2)

Esta sistema tiene solución si $B^2 - 4AC \neq 0$. En este caso,

$$\begin{cases} h = \frac{2CD - BE}{B^2 - 4AC}, \\ k = \frac{2AE - BD}{B^2 - 4AC}. \end{cases}$$
(A.3)

Así, si $B^2 - 4AC \neq 0$, la ecuación general queda reducida a

$$Ax'^{2} + Bx'y' + Cy'^{2} + \frac{CD^{2} - BDE + AE^{2} + B^{2}F - 4ACF}{B^{2} - 4AC} = 0.$$
(A.4)

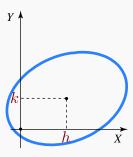
Las cónicas propias para las cuales $B^2 - 4AC \neq 0$, se llaman "cónicas centrales". Como la ecuación reducida (A.4) permanece sin cambios al sustituir x e y por -x y -y, esta cónica es simétrica respecto al punto (h,k) definido por las ecuaciones (A.3). Es decir, (h,k) es el *centro* de esta cónica.

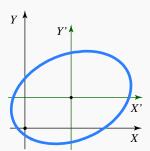
Ejemplo A.1

Consideremos la cónica $3x^2 - 2xy + 5y^2 - 10x - 10y - 4 = 0$. Verifique que es una cónica central y calcule su centro (h,k). Aplicar el cambio de variable (A.1) para reducir la cónica.

Solución: Como $B^2 - 4AC \neq 0$, se trata de una cónica central. El centro es, según (A.3), (h,k) = (15/7, 10/7). Aplicando el cambio de variable x = x' + h y y = x' + k, obtenemos

$$3x'^2 - 2x'y' + 5y'^2 - 153/7 = 0.$$





Rotación alrededor del origen. Sea P con coordenadas (x,y) en el sistema estándar XY. Nos interesa las coordenadas de P en un nuevo sistema X'Y' que corresponden a una rotación, respecto al origen en el sistema XY. Si el ángulo de rotación es θ (contra-reloj), el punto P = (x,y) tendrá coordenadas

$$(x',y') = (x\cos\theta + y\sin\theta, -x\sin\theta + y\cos\theta)$$

en el nuevo sistema.

En la figura (A.2) se ve que $OM = ON\cos\theta - NP\sin\theta$ (¿porqué?) y como x' = ON y y' = NP, concluimos entonces que $x = x'\cos\theta - y'\sin\theta$. De manera análoga, $y = x'\sin\theta + y'\cos\theta$.

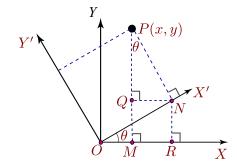


Figura A.2

La transformación de coordenadas, para pasar del sistema XY al sistema rotado (en un ángulo θ contra-reloj) X'Y', es,

$$\begin{cases} x = x' \cos \theta - y' \sin \theta \\ y = x' \sin \theta + y' \cos \theta \end{cases}$$
 (A.5)

En forma matricial,

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Al sustituir $x = x'\cos\theta - y'\sin\theta$ e $y = x'\sin\theta + y'\cos\theta$ en la ecuación general $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, obtenemos la ecuación

$$A'x'^{2} + Bx'y' + C'y'^{2} + D'x' + E'y' + F = 0,$$

donde

$$A' = A\cos^{2}\theta + B\sin\theta\cos\theta + C\sin^{2}\theta$$

$$B' = B\cos^{2}\theta - 2A\sin\theta\cos\theta + 2C\sin\theta\cos\theta - B\sin^{2}\theta$$

$$C' = C\cos^{2}\theta - B\sin\theta\cos\theta + A\sin^{2}\theta$$

$$D' = D\cos\theta + E\sin\theta$$

$$E' = E\cos\theta - D\sin\theta$$

$$F' = F$$

Eliminar el término "xy". Aquí es de interés el caso en que tomemos θ de tal manera que el coeficiente de "xy" se anule. En este caso, nos quedaría una nueva ecuación,

$$A' x'^{2} + C' y'^{2} + D' x' + E' y' + F = 0.$$

Esto nos dice que si la ecuación $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ corresponde a una cónica propia, este cambio de variable deja la cónica en forma estándar (sin rotación) en el sistema X'Y'.

Si en la ecuación general, $B \neq 0$, podemos usar una rotación para eliminar el término "xy". Al sustituir x = $x'\cos\theta - y'\sin\theta$ e $y = x'\sin\theta + y'\cos\theta$ en la ecuación general $A\hat{x}^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, obtenemos la ecuación

$$x'^{2} (A\cos^{2}\theta + B \operatorname{sen}\theta \cos\theta + C \operatorname{sen}^{2}\theta)$$
+ $x'y' (B\cos^{2}\theta - 2A \operatorname{sen}\theta \cos\theta + 2C \operatorname{sen}\theta \cos\theta - B \operatorname{sen}^{2}\theta)$
+ $y'^{2} (C\cos^{2}\theta - B \operatorname{sen}\theta \cos\theta + A \operatorname{sen}^{2}\theta)$
+ $y'(E\cos\theta - D \operatorname{sen}\theta) + x'(D\cos\theta + E \operatorname{sen}\theta) + F = 0$

Necesitamos calcular θ de tal manera que su coeficiente $B\cos^2\theta - 2A\sin\theta\cos\theta + 2C\sin\theta\cos\theta - B\sin^2\theta$ se anule,

 $B\cos^2\theta - 2A\operatorname{sen}\theta\cos\theta + 2C\operatorname{sen}\theta\cos\theta - B\operatorname{sen}^2\theta = 0 \implies (C - A)\operatorname{sen}(2\theta) + B\cos(2\theta) = 0.$

- Si $A \neq C$, $\tan(2\theta) = \frac{B}{A-C}$. Aquí tomamos la solución $\theta = \frac{\arctan(B/(A-C))}{2} \in]-\pi/4,\pi/4[$.
- Si A = C, entonces $B\cos(2\theta) = 0$. Para eliminar la rotación podemos tomar $\theta = \pi/4$.
- Si $\theta = \alpha$ es el ángulo que anula el coeficiente del término "xy", la ecuación general queda como

$$A' x'^{2} + C' y'^{2} + D' x' + E' y' + F' = 0$$

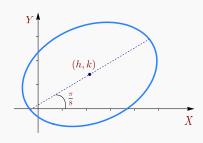
Más adelante haremos referencia al caso particular $\theta = \pi/2$, en este caso, el efecto de la transformación es, básicamente, intercambiar x con y, es decir, el resultado de aplicar el cambio de variable es

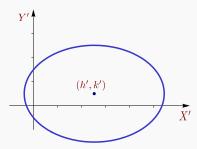
$$Cx^{2} - Bxy + Ay^{2} + Ex - Dy + F = 0.$$

Ejemplo A.2

Consideremos la cónica $3x^2 - 2xy + 5y^2 - 10x - 10y - 4 = 0$. Su centro es, según (A.3), (h,k) = (15/7,10/7). Como $A = 3 \neq C = 5$, el ángulo de rotación que anula el coeficiente del término xy al hacer el cambio de variable (A.5) es $\theta = \frac{\arctan(-2/(3-5))}{2} = \pi/8$. Al aplicar el cambio de variable se obtiene la cónica (con coeficientes aproximados)

$$2.585x'^2 + 5.414y'^2 - 13.065x' - 5.411y - 4 = 0.$$





El centro de la cónica en el sistema X'Y' es $(h',k')\approx (2.526,0.499)$. Como conocemos el ángulo de rotación, entonces $\binom{h}{k}=\binom{\cos\theta-\sin\theta}{\cos\theta}\binom{h'}{k'}\approx \binom{2.14286}{1.42857}$ como ya sabíamos.

A.2 Estudio de la ecuación general.

En el estudio de la ecuación general, empezamos con el caso más sencillo. Necesitamos este caso para reducir los casos más complejos, vía traslación o rotación, a este caso y luego, usando *invariantes*, obtener la clasificación del teorema (A.1).

Reducción al caso más simple. Vamos a establecer la reducción de la ecuación general en los casos en que $B^2 - 4AC$ se anula o no se anula.

Si $B^2 - 4AC \neq 0$, la ecuación general se reduce a

$$A'\overline{x}^2 + C'\overline{y}^2 + F' = 0.$$

En efecto, si $h = (2CD - BE)/(B^2 - 4AC)$ y $k = (2AE - BD)/(B^2 - 4AC)$, al aplicar la traslación x = x' + h, y = y' + k, a la ecuación general $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, obtenemos

$$Ax'^{2} + Bx'y' + Cy'^{2} + \frac{CD^{2} - BDE + AE^{2} + B^{2}F - 4ACF}{B^{2} - 4AC} = 0,$$
(A.6)

Ahora, a esta ecuación reducida le aplicamos la rotación $x'' = x' \cos \theta - y' \sin \theta$ e $y'' = x' \sin \theta + y' \cos \theta$ con θ escogido de tal manera que se elimine el término "x'y'", obtenemos

$$x''^2 (A\cos^2\theta + B\sin\theta\cos\theta + C\sin^2\theta) + y''^2 (C\cos^2\theta - B\sin\theta\cos\theta + A\sin^2\theta)$$

$$+\frac{CD^{2} - BDE + AE^{2} + B^{2}F - 4ACF}{B^{2} - 4AC} = 0.$$

O, en forma abreviada, $A'x''^2 + C'y''^2 + F' = 0$.

Si $B^2 - 4AC = 0$, la ecuación general se reduce a

$$A'x''^2 + E'y' + F' = 0$$
 o $C'y''^2 + D'x' + F' = 0$.

En efecto, como $B = \pm 2\sqrt{AC}$, la ecuación general se reduce a

$$A x^{2} \pm 2\sqrt{AC} xy + C y^{2} + D x + E y + F = 0.$$

Como antes, tomamos θ de tal manera que se elimine el término "xy". La ecuación general se reduce a

$$A'x'^2 + D'x' + E'y' + F = 0$$
 o $C'y'^2 + D'x' + E'y' + F = 0$.

Hay dos casos pues A' = 0 o C' = 0. Para ver esto, observemos que

$$A' = A\cos^2\theta \pm 2\sqrt{AC}\operatorname{sen}\theta\cos\theta + C\operatorname{sen}^2\theta = (\sqrt{A}\cos\theta \pm \sqrt{C}\operatorname{sen}\theta)^2$$

$$C' = C\cos^2\theta \pm 2\sqrt{AC}\operatorname{sen}\theta\cos\theta + A\operatorname{sen}^2\theta = (\sqrt{C}\cos\theta \pm \sqrt{A}\operatorname{sen}\theta)^2$$

Uno de estos coeficientes se anula si $\sqrt{C} \operatorname{sen} \theta = -\sqrt{A} \cos \theta$ o $\sqrt{A} \operatorname{sen} \theta = \sqrt{C} \cos \theta$. Si A = C y $B = \pm 2\sqrt{AC}$, obtenemos el resultado. Si $A \neq C$ y $B = \pm 2\sqrt{AC}$, entonces como $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta} = \frac{B}{A-C}$ tenemos,

$$B \tan^2 \theta + 2(A-C) \tan \theta - B = 0 \quad \Longrightarrow \quad \tan \theta = \frac{-2(A-C) \pm \sqrt{4(A-C)^2 + 4B^2}}{2B}$$

$$\Longrightarrow \quad \tan \theta = \pm \frac{A}{\sqrt{AC}} = \pm \frac{\sqrt{A}}{\sqrt{C}} \text{ (racionalizando con } \sqrt{A}\text{),}$$

$$\Longrightarrow \quad \sqrt{C} \operatorname{sen} \theta = -\sqrt{A} \cos \theta \text{ o } \sqrt{A} \operatorname{sen} \theta = \sqrt{C} \cos \theta.$$

Completando cuadrados, estas ecuaciones se reducen a

$$A'x''^2 + E'y' + F' = 0$$
 o $C'y''^2 + D'x' + F' = 0$.

Así, el estudio de la ecuación general se reduce al estudio de los casos $A'x'^2 + C'y'^2 + F' = 0$ y $C'y''^2 + D'x' + F' = 0$ (pues aplicando una rotación de $\pi/2$, se intercambia x con y). En lo que sigue, se hace el estudio detallado.

Estudio de los casos más simples. El primer caso que analizamos corresponde a la ecuación

$$Ax^2 + Cy^2 + F = 0. (A.7)$$

Si ninguno de los coeficientes es cero, tenemos

$$\frac{x^2}{-\frac{F}{A}} + \frac{y^2}{-\frac{F}{C}} = 1. (A.8)$$

De aquí podemos deducir que¹

- a) Si AC > 0 y AF < 0, tenemos una elipse.
- **b)** Si AC > 0 y AF > 0, no hay lugar geométrico.
- c) Si AC < 0 y F < 0 o F > 0, tenemos una hipérbola.

¹Observe que AC > 0 y AF < 0 significa que A y F tienen signo contrario y que A y C tienen el mismo signo.

En el caso de que algunos coeficientes en $Ax^2 + Cy^2 + F = 0$ sean cero, tenemos

- **d)** Si AC > 0 y F = 0, tenemos un punto.
- e) Si AC < 0 y F = 0, tenemos dos rectas que se intersecan.
- f) Si AC = 0 y (A + C)F > 0, no hay lugar geométrico.
- **g)** Si AC = 0 y (A + C)F < 0, tenemos líneas paralelas.
- **h)** Si AC = 0 y F = 0, tenemos una línea.

Ecuaciones sin el término "xy". En la ecuación

$$Ax^2 + Cy^2 + Dx + Ey + F = 0. (A.9)$$

Si A ni C son cero, completando cuadrados tenemos

$$A\left(x + \frac{D}{2A}\right)^2 + C\left(y + \frac{E}{2C}\right)^2 = \frac{D^2}{4A} + \frac{E^2}{4C} - F. \tag{A.10}$$

Si hacemos el cambio de variable $x' = x + \frac{D}{2A}$, $y' = y + \frac{E}{2C}$, la ecuación (A.9) se convierte en

$$Ax'^2 + Cy'^2 + \frac{4ACF - CD^2 - AE^2}{4AC} = 0.$$

Esta ecuación es del mismo tipo que la ecuación (A.8), así que podemos concluir que

- a) si AC > 0 y $\frac{4ACF CD^2 AE^2}{4C} < 0$, tenemos una elipse,
- **b)** si AC < 0 y $\frac{4ACF CD^2 AE^2}{4AC} \ge 0$, tenemos una hipérbola.

Usando la ecuación (A.10) podemos establecer centro, vértices, etc., en términos de los coeficientes A,C,D,E y F.

Casos A = 0 ó C = 0.

Ecuación $Ax^2 + Dx + Ey + F = 0$. Si $A \neq 0$ y $E \neq 0$, completando cuadrados en la ecuación, se obtiene la ecuación canónica de la parábola

$$\left(x + \frac{D}{2A}\right)^2 = -\frac{E}{A}\left(y + \frac{F}{E} - \frac{D^2}{4EA}\right)$$

Ecuación $Cy^2 + Dx + Ey + F = 0$. Si $C \neq 0$ y $D \neq 0$, completando cuadrados en la ecuación, se obtiene la ecuación canónica de la parábola

$$\left(y + \frac{E}{2C}\right)^2 = -\frac{D}{C}\left(x + \frac{F}{D} - \frac{E^2}{4CD}\right)$$

Ecuaciones con el término "xy". Si la ecuación $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ corresponde a una cónica propia, la presencia del término "Bxy" indica que la cónica no esta en posición estándar sino que presenta una rotación de ángulo θ , respecto al origen. El "discriminante" $B^2 - 4AC$, si se trata de una cónica no degenerada, indica la naturaleza de la cónica.

Ejemplo A.3

Consideremos la cónica (propia) $3x^2 + 5y^2 - 10x - 10y - 4 = 0$. Para tener una primera idea de cómo afecta la aparición del término "Bxy", vamos a agregar a esta ecuación este término de tal manera que $B^2 - 4AC$ sea negativo, positivo y nulo. Para esto, en la figura (A.3) se muestra la gráfica de las cónicas $3x^2 + 5y^2 - 10x - 10y - 4 = 0$, $3x^2 - 2xy + 5y^2 - 10x - 10y - 4 = 0$, $3x^2 - \sqrt{60}xy + 5y^2 - 10x - 10y - 4 = 0$, en ese orden.

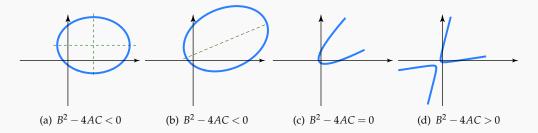


Figura A.3: En el caso de cónicas propias, el signo de $B^2 - 4AC$ nos indica que que tipo de cónica se trata.

Para estudiar la ecuación general hacemos un cambio de variable para convertir esta ecuación en una del tipo (A.10). La idea del cambio de variable es introducir un nuevo sistema X'Y' en el que la cónica quede en posición estándar, i.e., respecto a este sistema la cónica no presenta rotación.

Si $\theta = \alpha$ es el ángulo que anula el coeficiente del término "xy", la ecuación general queda como

$$A'x'^2 + C'y'^2 + D'x' + E'y' + F' = 0$$

donde

$$A' = A\cos^{2}\alpha + B \sin\alpha\cos\alpha + C \sin^{2}\alpha$$

$$C' = C\cos^{2}\alpha - B \sin\alpha\cos\alpha + A \sin^{2}\alpha$$

$$D' = D\cos\alpha + E \sin\alpha$$

$$E' = E\cos\alpha - D\sin\alpha$$

$$F' = F.$$

Como esta ecuación es del tipo (A.10),

a) si
$$A'C'>0$$
 y $\frac{4A'C'F'-C'D'^2-A'E'^2}{4C'}<0$, tenemos una elipse,

b) si
$$A'C' < 0$$
 y $\frac{4A'C'F' - C'D'^2 - A'E'^2}{4A'C'} \ge 0$, tenemos una hipérbola,

c) si
$$C'=0$$
, $A'\neq 0$ y $E'\neq 0$, tenemos una parábola,

d) si
$$A' = 0$$
, $C' \neq 0$ y $D' \neq 0$, tenemos una parábola.

Centro, focos y vértices de la cónica. Una vez que hemos eliminado el término "xy" de la ecuación general, podemos obtener la ecuación canónica, completando cuadrados. Si en el sistema X'Y', el centro (o el vértice) de la

cónica es (h',k'), entonces, en el sistema XY, (h,k) se puede obtener como

$$\begin{pmatrix} h \\ k \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h' \\ k' \end{pmatrix}.$$

Y en general, si (x',y') es un foco o un vértice de la cónica en el sistema X'Y', entonces el respectivo foco o vértice en el sistema XY sería

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Si $B^2 - 4AC \neq 0$, el centro (de la elipse o hipérbola) en el sistema XY también se puede calcular (como vimos antes)

con la fórmula,

$$h = (2CD - BE)/(B^2 - 4AC), k = (2AE - BD)/(B^2 - 4AC).$$

Si $B^2 - 4AC = 0$, se dice que el centro de la cónica está "en el infinito".

Si ya tenemos la ecuación sin rotación, el resto de la información la calculamos de la manera usual y luego aplicamos una rotación para ubicarla en el sistema *XY*.

Ejemplo A.4

Identifique la cónica $3x^2-2xy+5y^2-10x-10y-4=0$, determine su ecuación canónica en el sistema X'Y' y trazar su gráfica.

Solución: Primero calculamos el ángulo de rotación

$$\tan(2\alpha) = \frac{B}{A - C} = 1 \implies \alpha = \pi/8.$$

La nueva ecuación es

$$A' x'^{2} + C' y'^{2} + D' x' + E' y' + F' = 0.$$

donde

$$A' = A\cos^2\alpha + B\sin\alpha\cos\alpha + C\sin^2\alpha \approx 2.585$$

$$C' = C\cos^2\alpha - B\sin\alpha\cos\alpha + A\sin^2\alpha \approx 5.414$$

$$D' = D\cos\alpha + E\sin\alpha \approx -13.065$$

$$E' = E\cos\alpha - D\sin\alpha \approx -5.411$$

$$F' = F = -4$$
.

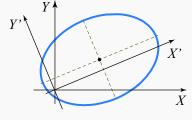
La cónica en el sistema X'Y' tiene ecuación (con coeficientes aproximados)

$$2.585x'^2 + 5.414y'^2 - 13.065x' - 5.411y' - 4 = 0.$$

Se trata de una elipse con ecuación canónica

$$\frac{(x'-2.527)^2}{8.456} + \frac{(y'-0.499)^2}{4.037} = 1.$$

Para hacer la representación gráfica, podemos dibujar los ejes X', Y' en el sistema estándar (rotando los ejes $\pi/8$ contra-reloj) y dibujar respecto a estos ejes usando la ecuación canónica.



Ejemplo A.5

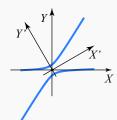
Identifique la cónica $x^2 - 20\sqrt{3}xy + 21y^2 - 6 = 0$, determine su ecuación canónica en el sistema X'Y' y trazar su gráfica.

Solución: Primero calculamos el ángulo de rotación

$$\tan(2\alpha) = \frac{B}{A - C} = \sqrt{3} \implies \alpha = \pi/6$$

La nueva ecuación es

$$-9x'^2 + 31y'^2 + 0 \cdot x' + 0 \cdot y' - 6 = 0.$$



La cónica en el sistema X'Y' tiene ecuación $-9x'^2 + 31y'^2 - 6 = 0$. Se trata de una hipérbola con ecuación canónica $-\frac{x'^2}{2/3} + \frac{y'^2}{6/31} = 1$. Para hacer la representación gráfica, podemos dibujar los ejes X', Y' en el sistema estándar (rotando los ejes $\pi/6$ contra-reloj) y dibujar respecto a estos ejes, usando la ecuación canónica.

Ejemplo A.6

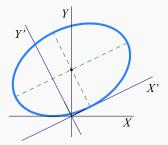
Identifique y haga la representación gráfica de la cónica $5x^2 - 4xy + 8y^2 + 4\sqrt{5}x - 16\sqrt{5}y + 4 = 0$. Determine su centro (h,k) en el sistema XY.

Solución: Aplicando el cambio d variable nos queda,

$$4x'^2 + 9y'^2 - 8x' - 36y' + 4 = 0$$
 o $\frac{(x'-1)^2}{9} + \frac{(y'-2)^2}{4} = 1$.

El ángulo de rotación es $\theta = \approx 0.463$. El centro de la elipse, en el sistema X'Y' es (h',k')=(1,2), por tanto, en el sistema XY es

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h' \\ k' \end{pmatrix} = (0, \sqrt{5}).$$



A.3 Invariantes y clasificación de cónicas.

No es necesario eliminar el término "xy" para clasificar una cónica. Esto se puede determinar con el valor de ciertas combinaciones de coeficientes.

Cuando aplicamos a la ecuación general $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, el cambio de variable (A.5) obtenemos la ecuación $A'x'^2 + C'y'^2 + D'x' + E'y' + F' = 0$, donde

$$A' = A\cos^{2}\theta + B\sin\theta\cos\theta + C\sin^{2}\theta$$

$$C' = C\cos^{2}\theta - B\sin\theta\cos\theta + A\sin^{2}\theta$$

$$D' = D\cos\theta + E\sin\theta$$

$$E' = E\cos\theta - D\sin\theta$$

$$F' = F$$
(A.11)

Cuando aplicamos el cambio de variable (A.1), del origen al nuevo origen O' = (h,k), la ecuación general queda $A'x'^2 + C'y'^2 + D'x' + E'y' + F' = 0$, donde

$$A' = A, B' = B, C' = C,$$

 $D' = 2Ah + Bk + D,$
 $E' = Bh + 2Ck + E,$
 $F' = Ah^2 + Bhk + Ck^2 + Dh + Ek + F.$
(A.12)

Se observa entonces que si aplicamos una rotación, el coeficiente F no varía y si aplicamos una traslación, no varían los coeficientes A, B y C. También hay combinaciones de coeficientes que no cambian cuando se aplican combinaciones de estas dos transformaciones de coordenadas. Estas combinaciones se llamamos *invariantes* (respecto a traslación y rotación). Las combinaciones de coeficientes que nos interesan son las que deciden la naturaleza de la cónica, por ejemplo $B^2 - 4AC$.

El invariante más simple es la combinación $\Theta = A + C$. En efecto, en el caso de una traslación es obvio, según (A.12), que A + C = A' + C'. En el caso de una rotación, podemos usar (A.18) para establecer que $A' + C' = (A + C)\cos^2\theta + (A + C)\sin^2\theta = A + C$.

Un segundo invariante es $\Phi = B^2 - 4AC$. El valor de Φ no cambia si aplicamos una traslación pues no cambian A, B, Y C. Si aplicamos una rotación,

$$A' - C' = (A - C)\cos 2\theta + B \sin 2\theta,$$

y entonces

$$(A'-C')^2 + B'^2 = (A-C)^2 + B^2$$

Ahora, agregamos 2AC - 2AC en el miembro izquierdo y 2A'C' - 2A'C' en el miembro derecho para obtener

$$(A' + C')^2 - 4A'C' + B'^2 = (A + C)^2 - 4AC + B^2$$

finalmente, como Θ es invariante,

$$B'^2 - 4A'C' = B^2 - 4AC.$$

Un tercer invariantes es $\Delta = 4ACF + BDE - AE^2 - CD^2 - FB^2$. La prueba es similar.

Ahora vamos aplicar estos invariantes para identificar cónicas a partir de la ecuación general. Como hemos visto, la ecuación general $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, se puede reducir a alguna de las formas

$$A'x^2 + C'y^2 + F' = 0$$
, con A', C' no nulos. (A.13)

$$C''y^2 + D''x = 0$$
, con $C'' \neq 0$ y $D'' \neq 0$. (A.14)

287

Es suficiente considerar estos casos porque al aplicar una rotación de $\pi/2$ se intercambia x con y y se obtienen las otras combinaciones.

• Si la ecuación general se reduce a la forma (A.14), entonces $\Phi = 0$ y $\Delta = -C''D''^2 \neq 0$. Como Φ y Δ son invariantes, aplicados en la ecuación general, nos dice que si

$$\Phi = B^2 - 4AC = 0$$
 y $\Delta = 4ACF + BDE - AE^2 - CD^2 - FB^2 \neq 0$,

entonces tenemos una parábola.

Si la ecuación general se reduce a la forma (A.13), entonces $\Phi = -4A'C'$ y $\Delta = 4A'C'F' = -\Phi F'$.

- Si $\Phi > 0$, la ecuación general solo se puede reducir a la forma (A.13) y en este caso $\Phi = -4A'C' > 0$ nos dice que A' y C' tienen signos opuestos y que F' es cero solo cuando $\Delta = 0$. De acuerdo a nuestra caracterización de cónicas en el caso más simple, la ecuación general representa una hipérbola si $\Phi = B^2 - 4AC > 0$ y $\Delta \neq 0$.
- Si $\Phi < 0$, la ecuación general solo se puede reducir a la forma (A.13) y en este caso $\Phi = -4A'C' < 0$ nos dice que A' y C' tienen signos iguales y que F' es cero solo cuando $\Delta = 0$. De acuerdo a nuestra caracterización de cónicas en el caso más simple, la ecuación general representa una elipse si $\Phi = B^2 - 4AC < 0$, $\Delta \neq 0$ y F'tiene signo opuesto a A' y C'. En resumen, si $\Phi < 0$, la ecuación general corresponde a una elipse si $\Theta \Delta < 0$.

Toda este análisis se resumen en teorema (A.1).

EJERCICIOS

A.1 Determine la ecuación canónica, en el sistema X'Y', de las curvas que se dan a conti-nuación. Hacer la representación gráfica en el sistema XY.

- a) $73x^2 + 72xy + 52y^2 + 74x 32y 47 = 0$.
- **b)** $3x^2 + 6xy + 3y^2 x + y = 0.$
- c) 2xy x + y 3 = 0.
- **d)** $34x^2 + 24xy + 41y^2 20x + 140y + 50 = 0$.
- e) $x^2 4xy + 4y^2 6x + 2y = 0$.
- Considere la parábola $(4x 3y)^2 = 250x 100$. Determine las coordenadas del vértice en el sistema XY. A.2
- Use invariantes para determinar la naturaleza de las curvas de ecuación **A.3**
 - a) $x^2 4xy + 4y^2 + 5y\sqrt{5} + 1 = 0$
 - **b)** $7x^2 6xy\sqrt{3} + 13y^2 16 = 0$
 - c) $x^2 10xy + y^2 + 1 = 0$
- **A.4** Muestre que la cónica Bxy + Dx + Ey + F = 0 es una hipérbola si $B \neq 0$ y $F \neq 0$.
- Considere la ecuación $Ax^2 + Bxy + Cy^2 + F = 0$.
 - a) Muestre que si a la ecuación le aplicamos una rotación con un ángulo θ que anula el término "xy", entonces la ecuación se reduce a otra de la forma $A' x'^2 + C' y'^2 + F = 0$ (F es invariante).
 - **b)** Muestre que si A = C y $B^2 AC = 0$, entonces $\Delta = 0$ y además, si a la ecuación le aplicamos una rotación con un ángulo $\theta = \pi/4$, la ecuación se reduce a $2Ay^2 + F = 0$ o $2Ax^2 + F = 0$ (una cónica degenerada).

A.6 La ecuación (A.6) se puede escribir como $Ax'^2 + Bx'y' + Cy'^2 + \frac{\Delta}{\Phi} = 0$. Muestre que si $\Delta = 0$ y si $\Phi > 0$, entonces la ecuación, si $A \neq 0$ o $C \neq 0$, corresponde a una o un par de rectas. *Sugerencia*: Vea la ecuación como una función cuadrática y use la fórmula general.

A.7 Muestre que la rotación con $\theta = \pi/2$, aplicada a la ecuación general, la convierte en $Cx^2 - Bxy + Ay^2 + Ex - Dy + F = 0$.

A.4 Reconocimiento de cónicas con métodos matriciales.

La ecuación general $Ax^2 + 2Bxy + Cy^2 + Dx + Ey + F = 0$ se puede escribir en términos matriciales como

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} A & B \\ B & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} D & E \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + F = 0, \tag{A.15}$$

o, como $X^TAX + KX + F = 0$ con $X = \begin{pmatrix} x \\ y \end{pmatrix}$, $A = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$ y $K = \begin{pmatrix} D & E \end{pmatrix}$.

Si $P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}$ es una matriz que diagonaliza ortogonalmente a A, tal que Det(P) = 1, entonces el cambio de variable $\begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} x' \\ y' \end{pmatrix}$ provoca una rotación. Sustituyendo X = PX' en la ecuación (A.15),

$$(PX')^T A(PX') + K(PX') + F = 0 \iff X'^T (P^T A P) X' + K(PX') + F = 0.$$

Como P diagonaliza a A, entonces

$$(P^T A P) = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix},$$

donde λ_1 y λ_2 son vectores propios de A. Entonces, $X'^T(P^TAP)X' + K(PX') + F = 0$ es equivalente a

$$\begin{pmatrix} x' & y' \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} D & E \end{pmatrix} \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} + F = 0, \tag{A.16}$$

o

$$\lambda_1 x'^2 + \lambda_2 y'^2 + D'x' + E'y' + F = 0. \tag{A.17}$$

Como se ve, se eliminó el término "xy" y la cónica se puede reconocer fácilmente.

Cálculo de la matriz P. Primero hay que calcular una *base ortonormal* para cada espacio propio asociado a cada valor propio λ_i . En nuestro caso, cada espacio propio tiene una base ortonormal con un solo vector unitario.

Ahora debemos colocar estos vectores base como columnas de la matriz P de tal manera que |P| = 1.

Si $P = (v_1 \quad v_2)$ con |P| = 1, los vectores unitarios v_1 y v_2 , generan los nuevos ejes X'Y'. El ángulo de rotación es $\theta = \angle e_1, v_1$ con $e_1 = (0,1)$.

Ejemplo A.7

Identifique y haga la representación gráfica de la cónica $5x^2 - 4xy + 8y^2 + 4\sqrt{5}x - 16\sqrt{5}y + 4 = 0$.

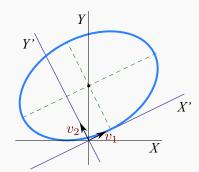
Solución: La forma matricial de la cónica es

$$X^T A X + K X + F = 0$$

con
$$A = \begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix}$$
 y $K = \begin{pmatrix} 4\sqrt{5} \\ -16\sqrt{5} \end{pmatrix}$.

La ecuación característica de A es

$$|\lambda I - A| = Det \begin{pmatrix} \lambda - 5 & 2 \\ 2 & \lambda - 8 \end{pmatrix} = (\lambda - 9)(\lambda - 4).$$



La base ortonormalizada para el espacio propio asociado a $\lambda_1=4$ es $v_1=\begin{pmatrix}2/\sqrt{5}\\1/\sqrt{5}\end{pmatrix}$

La base ortonormalizada para el espacio propio asociado a $\lambda_2 = 9$ es $v_2 = \begin{pmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}$.

La matriz $P = \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}$ tiene determinante igual a 1. Ahora, haciendo el cambio de variable X = PX' nos queda,

$$4x'^2 + 9y'^2 - 8x' - 36y' + 4 = 0$$
 o $\frac{(x'-1)^2}{9} + \frac{(y'-2)^2}{4} = 1$.

El ángulo de rotación es $\theta = \arccos((1,0) \cdot v_1)/||(1,0)||||v_1|| = \arccos(2/\sqrt{5}) \approx 0.463$. El centro de la elipse, en el sistema X'Y' es (h',k')=(1,2), por tanto, en el sistema XY es $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h' \\ k' \end{pmatrix}$, i.e., $(h,k)=(0,\sqrt{5})$.

A.5 Ecuación paramétrica de una cónica.

Una parametrización de una curva C es una función $r(t) = (x(t), y(t)), t \in [a, b]$, con x(t) y y(t) funciones continuas en [a, b]. Las parametrizaciones es lo que más usado en gráficos por computadora y modelado geométrico ya que los puntos de la curva se calculan fácilmente. En contraste, la evaluación de los puntos de una curva definida implícitamente (como es el caso de las cónicas) es mucho más difícil.

En esta sección vamos a establecer una parametrización para la cónica propia de ecuación general $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. Hay varias maneras de hacer esto. Aquí vamos a usar la teoría que hemos desarrollado previamente, usando algunas parametrizaciones conocidas para los casos simples. No vamos a ver cómo se obtiene una parametrización. Para esto puede ver ([?]). En principio, podemos usar el teorema (A.1) para identificar la cónica, luego la llevamos a la forma estándar. En esta forma es fácil definir la parametrización.

Parábola. La parábola $(y-k)^2 = 4p(x-h)$ se puede parametrizar como

$$\left\{ \begin{array}{ll} x(t)=h+pt^2, & \\ & t\in\mathbb{R}. \\ y(t)=k+2pt, & \end{array} \right.$$

Para parametrizar $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, recordemos que esta ecuación corresponde a una parábola si $B^2 - 4AC = 0$ y $4ACF + BDE - AE^2 - CD^2 - FB^2 \neq 0$. Aplicamos una rotación de ángulo $\theta = \arctan(B/(A-C))$ si $A \neq C$, en otro caso, $\theta = \pi/4$. La ecuación se reduce a

$$A'x'^2 + C'y'^2 + D'x' + E'y' + F' = 0$$

donde

$$A' = A\cos^{2}\theta + B\sin\theta\cos\theta + C\sin^{2}\theta,$$

$$C' = C\cos^{2}\theta - B\sin\theta\cos\theta + A\sin^{2}\theta,$$

$$D' = D\cos\theta + E\sin\theta,$$

$$E' = E\cos\theta - D\sin\theta,$$

$$F' = F.$$
(A.18)

En este caso A' = 0 o C' = 0. En resumen, la ecuación se reduce a

$$A'x'^2 + D'x' + E'y' + F = 0$$
 o $C'y'^2 + D'x' + E'y' + F = 0$.

Una vez que tenemos la ecuación así, ya podemos completar cuadrados y aplicar la parametrización. Para obtener una representación gráfica simétrica se puede usar $t \in [-s,s]$, s > 0.

Estudio del caso $C'y'^2 + D'x' + E'y' + F = 0$. La ecuación canónica en el sistema X'Y' es

$$(y' + E'/2C')^2 = -\frac{D'}{C'}(x' + F/D' - E'^2/4C'D').$$

Por lo tanto, $h = (E'^2 - 4C'F)/4C'D'$, k = -E'/2C' y p = -D/4C'. La parametrización en el sistema X'Y' es

$$\begin{cases} x'(t) = h + pt^2, \\ t \in [-s, s], s > 0. \end{cases}$$

$$y'(t) = k + 2pt,$$

y la parametrización en el sistema XY es

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}, \ t \in \mathbb{R}.$$

donde θ es el ángulo de rotación.

El estudio del caso $A'x'^2 + D'x' + E'y' + F = 0$ queda como ejercicio.

La elipse. Si la ecuación canónica de la elipse es $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, una parametrización es

$$\begin{cases} x(t) = h + a\cos t, \\ t \in [0, 2\pi]. \end{cases}$$

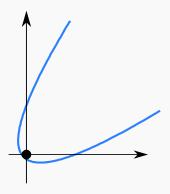
$$y(t) = k + b\operatorname{sen} t,$$

Ejemplo A.8

Parametrizar la cónica $3x^2 - \sqrt{36}xy + 3y^2 - 10x - 10y - 4 = 0$.

Solución: Como $B^2 - 4AC = 0$ y $4ACF + BDE - AE^2 - CD^2 - FB^2 = -1200 \neq 0$, se trata de una parábola. Como A = C el ángulo es $\theta = \pi/4$. Al aplicar la rotación nos queda la ecuación

$$6y^2 - 10\sqrt{2}x - 4 = 0.$$



Entonces $h = -\sqrt{2}/5$, k = 0 y $p = 5/(6\sqrt{2})$. Por lo tanto, la parametrización en el sistema XY es

$$\left\{ \begin{array}{l} x(t) = \frac{1}{60} \left(-12 - 50t + 25t^2 \right), \\ \\ y(t) = \frac{1}{60} \left(-12 + 50t + 25t^2 \right), \end{array} \right. \quad t \in [-s, s], \, s > 0.$$

En particular, la circunferencia $(x - h)^2 + (y - k)^2 = r^2$ se parametriza como

$$\begin{cases} x(t) = h + r\cos t, \\ t \in [0, 2\pi]. \end{cases}$$

$$y(t) = k + r\sin t,$$

Si $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ es la ecuación de una elipse, al aplicar una rotación que elimine el término "xy", obtenemos

$$A'x'^{2} + C'y'^{2} + D'x' + E'y' + F = 0$$

Completando cuadrados nos queda

$$\frac{(x'-h)^2}{F'/A'} + \frac{(y'-k)^2}{F'/C'} = 1,$$

donde h = -D'/2A', k = -E'/2C', $F' = -F + D'^2/4A' + E'^2/4C'$. Esta información es suficiente para parametrizar la elipse con $\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$ en el sistema X'Y'. La parametrización $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ en el sistema XY se obtiene con

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}, \ t \in [0, 2\pi],$$

donde θ es el ángulo de rotación.

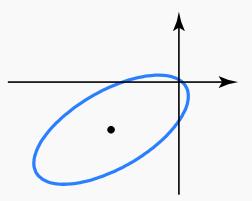
La Hipérbola. Si la ecuación canónica de la hipérbola es $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$, una parametrización es

Ejemplo A.9

Parametrizar la cónica $2x^2 - 2\sqrt{3}xy + 4y^2 + 5x + 6y - 1 = 0$.

Solución: Como $B^2-4AC=-20<0$ y $(A+C)(4ACF+BDE-AE^2-CD^2-FB^2)=6(-192-60\sqrt{3})<0$, se trata de una elipse. El ángulo de rotación es $\theta=\pi/6$. Al aplicar la rotación nos queda la ecuación

$$x^{2} + \left(3 + \frac{5\sqrt{3}}{2}\right)x + 5y^{2} + \left(-\frac{5}{2} + 3\sqrt{3}\right)y - 1 = 0.$$



Entonces h = -3.66506, k = -0.269615, a = 3.84658 y b = 1.72024. Por tanto,

$$x'(t) = -3.66506 + 3.84658\cos t$$

 $y'(t) = -0.269615 + 1.72024 \operatorname{sen} t.$

La parametrización en el sistema XY es

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} -3.03923 + 3.33123\cos t - 0.860121\sin t \\ -2.06603 + 1.92329\cos t + 1.48977\sin t \end{pmatrix}, \ t \in [0, 2\pi],$$

El centro de la elipse, en XY, es (-3.03923, -2.06603).

$$\left\{ \begin{array}{l} x(t)=h+a\cosh t,\\ \\ y(t)=k+b \operatorname{senh} t, \end{array} \right.$$

Esta parametrización solo es para la rama derecha de la hipérbola. La rama de la izquierda la obtenemos por reflexión sobre el eje x = h, es decir,

$$\left\{ \begin{array}{l} x(t)=2h-(h+a\cosh t),\\ \\ y(t)=k+b \operatorname{senh} t, \end{array} \right.$$

Si $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ corresponde a una hipérbola (i.e. si $B^2 - 4AC < 0$ y $B^2 - 4AC > 0$ y $ACF + BDE - AE^2 - CD^2 - FB^2 \neq 0$), eliminamos el término "xy" y obtenemos la forma reducida $A'x^2 + C'y^2 + D'x + E'y + F = 0$. Completando cuadrados obtenemos h, k, a y b pero respecto al sistema X'Y'. Si (x'(t), y'(t)) es la parametrización en el sistema X'Y', la representación gráfica de la cónica en el sistema XY' la podemos hacer con la parametrización

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix},$$

donde θ es el ángulo de rotación. El estudio completo queda como ejercicio.

EJERCICIOS

- A.8 Probar que las parametrizaciones dadas efectivamente satisfacen la ecuación de la cónica respectiva.
- **A.9** Determine una parametrización para el caso en que la parábola tenga ecuación $(x h)^2 = 4p(y k)$.
- **A.10** Hacer el análisis completo para el caso en el que la parábola quede como $A'x'^2 + D'x' + E'y' + F = 0$.
- A.11 Determine una parametrización para el caso en que la hipérbola tenga ecuación

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1.$$

- A.12 Hacer el análisis completo para el caso de la hipérbola.
- A.13 Parametrizar las cónicas
 - a) 2xy x + y 3 = 0.
 - **b)** $34x^2 + 24xy + 41y^2 20x + 140y + 50 = 0.$
 - c) $x^2 4xy + 4y^2 6x + 2y = 0$.
- **A.14** Considere la parábola $(4x 3y)^2 = 250x 100$. Determine las coordenadas del vértice en el sistema XY.

Bibliografía

- [1] James J. Callahan. Advanced Calculus. A Geometric View. Springer. 1st Edition. 2010.
- [2] Serge Lang. Calculus of Several Variables. Addison-Wesley. 1973.
- [3] Klaus Weltner, Wolfgang J. Weber, Jean Grosjean y Peter Schuster. *Mathematics for Physicists and Engineers*. Springer-Verlag Berlin Heidelberg. 2009.
- [4] Wilfred Kaplan. Advanced Calculus. Pearson; 5 edition. 2002.
- [5] Sadri Hassani. Mathematical Methods For Students of Physics and Related Fields. Springer. 2009.
- [6] Andrew Pressley. Elementary Differential Geometry. 2nd edition. Springer-Verlag London Limited. 2010.
- [7] B. Kusse.; E. Westwing. *Mathematical Physics. Applied Mathematics for Scientists and Engineers.* 2nd Edition. Wiley-VCH Verlag GmbH & Co. 2006.
- [8] Claudio Pita R. Cálculo Vectorial. Prentice-Hall. 1995.
- [9] Louis Brand. Advanced Calculus. An Introduction to Classical Analysis. Wiley & Sons, Inc. 1995.
- [10] Tom Apostol. Calculus. Wiley. 1967
- [11] J.M. Aarts. "Plane and Solid Geometry." Springer. 2007.
- [12] A. Chiang. "Métodos Fundamentales de Economía Matemática". McGraw-Hill. 1987
- [13] J. L. Coolidge. "A history of the conic sections and quadric surfaces". Dover publications, Inc. 1968.
- [14] E. Dowling. "Matemáticas Para Economistas". McGraw-Hill. 1982
- [15] H. Eves. "An introduction to the history of mathematics". Holt, Rinehart and Winston, Inc. 1969.
- [16] Jerrold Marsden, Anthony Tromba. Cálculo Vectorial. Addison-Wesley, 2004.
- [17] M. Minoux. "Mathematical Programing". Wiley & Sons. New York. 1986
- [18] Walter Mora F. "Gráficos 3D interactivos con Mathematica y LiveGraphics3D". Revista digital Matemática, Educación e Intenet (http://www.tec-digital.itcr.ac.cr/revistamatematica/). Volumen 6, número 2. 2005.
- [19] Jorge Poltronieri. Cálculo Integral: Integración Múltiple. Editorial Cimpa. 1ra ed. Escuela de Matemática, Universidad de Costa Rica. 2006.
- [20] Jorge Poltronieri. Cálculo Integral: Integración de Línea y Superficie. Editorial Cimpa. 1ra ed. Escuela de Matemática, Universidad de Costa Rica. 2006.
- [21] Sherman Stein. Cálculo con Geometría Analítica. McGraw-Hill. 1984.
- [22] J. Vergara, "Programación Matemática y Cálculo Económico". Ed. Vicens-vives. España. 1975. Addison-Wesley. 3ra ed. 1991.

Solución de los Ejercicios

Soluciones del Capítulo 1

1.1
$$2x^2 - 4x + 1 = y \Rightarrow 2(x - 1)^2 = y + 1 \Rightarrow (x - 1)^2 = \frac{1}{2}(y + 1)$$
.

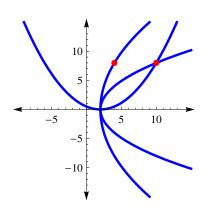
- **1.2** El vértice es (h,k) = (1,3). Por la posición del foco se deduce que el eje es paralelo al eje X y la parábola abre hacia la derecha. Entonces la ecuación canónica es $(y-3)^2 = 4p(x-1)$. Como p = ||(2,3) - (1,3)|| = 1, la ecuación canónica es $(y-3)^2 = 4(x-1)$.
- **1.3** La ecuación canónica es de la forma $(y-k)^2=4p(x-h)$. Como contiene los tres puntos, entonces

$$\begin{cases} (0-k)^2 &= 4p(0-h) \\ (2-k)^2 &= 4p(-1-h) \\ (-2-k)^2 &= 4p(-2-h) \end{cases} \implies h = \frac{1}{24}, \ p = -\frac{2}{3} \ \ y \ \ k = \frac{1}{3}$$

Por tanto, la parábola es $\left(y - \frac{1}{3}\right)^2 = 4 \cdot -\frac{2}{3}\left(x - \frac{1}{24}\right)$

- **1.4** El vértice es (h,k) = (2,0). Como b > 2, la parábola solo podría abrir hacia arriba o hacia la derecha.
 - Si abre hacia arriba, la ecuación canónica es $(x-2)^2=4py$. En este caso, como $8+p=10 \implies p=2$ y entonces b = 10. En este caso tenemos la pará]bola $(x - 2)^2 = 8y$.
 - Si abre hacia la derecha, la ecuación canónica es $y^2 = 4p(x-2)$. En este caso, como la directriz tiene ecuación x = 2 - p, tenemos $\begin{cases} b - (2 - p) &= 10 \\ 64 &= 4p(b - 2) \end{cases} \implies p = 8; \ b = 4 \ \text{o} \ p = 2; \ b = 10. \ \text{Las tres parábolas son} \ (x - 2)^2 = 8y;$ $y^2 = 32(x - 2) \ y \ y^2 = 8(x - 2).$

$$\begin{cases} 64 = 4p(b-2) \\ y^2 = 32(x-2) \text{ y } y^2 = 8(x-2). \end{cases}$$



1.5.a
$$y^2 = -\frac{8}{9}(x + \frac{3}{8})$$

1.5.b
$$(y+1)^2 = 4(x+2)$$

1.5.c
$$(x+1)^2 = 2(y-2)$$

1.5.d
$$x^2 = (y - 2)$$

1.6 Como
$$(h,k) = (-1,1)$$
 y $p = 1$, entonces $(x+1)^2 = 4(y-1)$.

1.7 La ecuación es $(y-k)^2=4p(x-h)$ y abre a la izquierda. El vértice es (h,k)=(5,4) y p=-2. Entonces la ecuación canónica es $(y-4)^2=-8(x-5)$.

1.8
$$(x-2)^2 = 2(y-3)$$
.

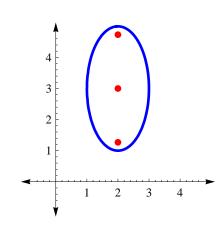
1.9.a
$$\frac{(x+4)^2}{16} + \frac{(y+2)^2}{2} = 1$$

1.9.b
$$\frac{(x+2)^2}{4} + \frac{(y+4)^2}{16} = 1$$

1.9.c
$$x^2 + \frac{(y-2)^2}{2} = 1$$

1.10 La ecuación canónica la obtenemos completando cuadrados.

- Ecuación canónica: $\frac{(y-3)^2}{4} + \frac{(x-2)^2}{1} = 1$.
- Centro: (h,k) = (2,3)
- $a^2 = 4$, $b^2 = 1$ y $c = \sqrt{3}$
- Focos: $(2, 3 \pm \sqrt{3})$
- No hay intersección con ejes.

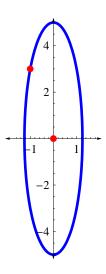


1.11 Los datos los podemos representar en la figura de la derecha.

Como el centro es (h,k) = (0,0), entonces la ecuación es

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Esto es así pues el vértice (0,5) nos indica que el eje mayor está (en este caso) sobre el eje Y.



Ahora, como (0,5) es un vértice y el centro está en (0,0), se sigue que a=5 y

$$\frac{x^2}{b^2} + \frac{y^2}{25} = 1$$

Por otra parte, como (-1,3) está en la elipse

$$\frac{(-1)^2}{b^2} + \frac{3^2}{25} = 1$$

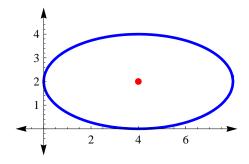
de aquí, despejando, obtenemos $b^2 = \frac{25}{16}$. Finalmente, la ecuación canónica de la elipse es

$$\frac{x^2}{\frac{25}{16}} + \frac{y^2}{25} = 1$$

1.12 La elipse se puede ver en la figura de la derecha.

Como la elipse es tangente a los ejes en el primer cuadrante, el otro vértice debe ser (0,2) (su eje mayor no puede ser paralelo al eje Y pues su semieje menor sería de 8 unidades y el mayor de 1 unidad!). Luego, (h,k)=(4,2), a=4 y b=2. La ecuación canónica es

$$\frac{(x-4)^2}{16} + \frac{(y-2)^2}{4} = 1.$$



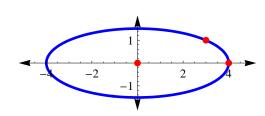
1.13 La elipse se puede ver en la figura de la derecha. Según los datos, (h,k) = (0,0) y (4,0) es el vértice de la derecha, entonces a = 4 y (3,1) satisface la ecuación de la elipse:

$$\frac{3^2}{16} + \frac{1^2}{b^2} = 1 \implies b^2 = \frac{16}{7}$$
. La ecuación canónica es

$$\frac{x^2}{16} + \frac{y^2}{\frac{16}{7}} = 1.$$

• Centro: (h,k) = (0,0),

•
$$c = \sqrt{\frac{96}{7}}$$
,



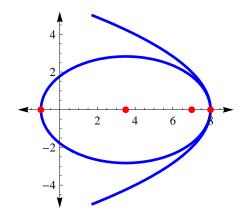
- focos: $(0 \pm \sqrt{\frac{96}{7}}, 0)$,
- vértices: (4,0) y (-4,0).

1.14
$$(x-2)^2 + \frac{(y-1)^2}{9} = 1.$$

- Centro: (h,k) = (2,1),
- $c = \sqrt{8}$,
- focos: $(2,1 \pm \sqrt{8})$
- vértices: $(2,1\pm3)$.
- 1.15 La elipse se puede ver en la figura de la derecha.

La ecuación canónica de la parábola es $y^2 = -4(x-8)$. De esta ecuación se obtiene el otro foco y un vértice derecho de la elipse. La ecuación canónica es

$$\frac{(x-3.5)^2}{4.5^2} + \frac{y^2}{8} = 1.$$



- Centro: (h,k) = (3.5,0),
- c = 3.5,
- focos: (0,0) y (7,0),
- vértices: (-1,0) y (8,0).

1.16 La ecuación canónica es $\frac{x^2}{64} + \frac{y^2}{55} = 1$.

- Centro: (h,k) = (0,0),
- c = 3,
- focos: (±3,0),
- vértices: $(\pm 8,0)$.

1.17 La ecuación canónica es $\frac{(x-2)^2}{9} + \frac{(y+3)^2}{16} = 1$. Por lo tanto es una elipse.

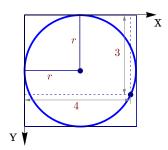
- Centro: (h,k) = (2,-3),
- $c = \sqrt{7}$,
- focos: $(2, -3 \pm \sqrt{7})$,
- vértices: $(2, -3 \pm 4)$.

299

Si consideramos los lados del cuadrado como ejes coordenados, el círculo inscrito es un círculo con centro en (r,r) y (x,y) = (3,4) es un punto en la circunferencia. Por lo tanto,

$$(x-h)^2 + (y-k)^2 = r^2,$$

 $(3-r)^2 + (4-r)^2 = r^2,$
 $r = 7 - 2\sqrt{6} \approx 2.1$
 $r = 7 + 2\sqrt{6} \approx 11.8$



Como r < 4 entonces $r = 7 - 2\sqrt{6}$.

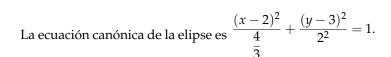
1.19 • El foco de la parábola
$$(x-2)^2 = -4(y-6)$$
 es $V_1 = (2, 6-1) = (2,5)$ pues $p = -1$.

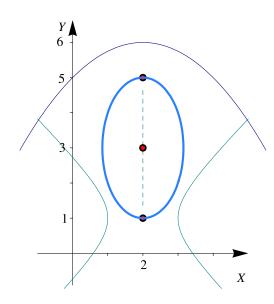
• El centro de la hipérbola
$$(x-2)^2 - (y-1)^2 = 1$$
 es $V_2 = (2,1)$.

• Los vértices nos indican que la elipse tiene centro en
$$(h,k) = (2,3)$$
 y su ecuación canónica es

$$\frac{(x-2)^2}{b^2} + \frac{(y-3)^2}{2^2} = 1.$$

$$\frac{(1-2)^2}{b^2} + \frac{(2-3)^2}{2^2} = 1 \implies b^2 = \frac{4}{3}.$$





1.20 La ecuación canónica es

$$\frac{(y-2)^2}{4} - \frac{(x-3)^2}{8} = 1.$$

1.21 La ecuación canónica es

$$\frac{x^2}{64} - \frac{y^2}{36} = 1.$$

Como c=10, los focos son $(\pm 10,0)$ y los vértices son $(\pm 8,0)$. La ecuación de las asíntotas es 3x-4y=0 y 3x+4y=0.

- **1.22** La ecuación canónica es $\frac{y^2}{9} \frac{(x-1)^2}{7} = 1$.
- **1.23** El centro es (-4,1). a=6 y b=4. La ecuación canónica es $\frac{(x+4)^2}{36} \frac{(y-1)^2}{16} = 1$.
- **1.24** La ecuación canónica es $\frac{(x-1)^2}{16} \frac{(y+2)^2}{9} = 1$. Vértices en (-3,2),5,-2 y focos en (-4,-2),(6,-2). Las asíntotas son $y = \frac{3}{4}(x-1) 2$.
- 1.25 La ecuación canónica es

$$\frac{(x-3)^2}{9} - \frac{(y-2)^2}{4} = 1.$$

Como $c = \sqrt{13}$, los focos son $(3 \pm \sqrt{13}, 2)$ y los vértices son $(3 \pm 3, 2)$.

1.26 Como $\sqrt{3} \cdot 4 > 6$, la asíntota $y = \sqrt{3}x$ va por arriba del punto (4,6). Esto nos dice que la ecuación de la hipérbola es $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Como (4,6) está en la hipérbola y como $b^2 = 3a^2$, entonces $\frac{16}{a^2} - \frac{36}{3a^2} = 1 \implies a = 4$. Así, la ecuación canónica es

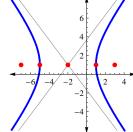
$$\frac{x^2}{4} - \frac{y^2}{12} = 1.$$

- **1.27** La ecuación canónica es $\frac{x^2}{6} \frac{y^2}{2} = 1$.
- **1.28** La parábola tiene ecuación canónica $(y-1)^2 = -8(x+2)$, por tanto el centro de la hipérbola es (-2,1).

Como un foco esta en (3,1) y un vértice esta en (1,1), el eje transversal es paralelo al eje X, a=3, c=5 y b=4. La ecuación canónica es

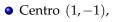
$$\frac{(x+2)^2}{9} - \frac{(y-1)^2}{16} = 1.$$

Sus focos son (3,1), (-7,1) y sus vértices (1,1), (-5,1). Las asíntotas son $y=\pm\frac{4}{3}(x+2)+1$. La hipérbola interseca al eje X en $x\approx -5.093$ y $x\approx 1.0933$.



- **1.29.a** Como k > 0 y k 16 > 0, se trata de una elipse.
- **1.29.b** Como k > 0 y k 16 < 0, se trata de una hipérbola.
- **1.29.c** Como k < 0 y k 16 < 0, la ecuación no tiene solución, es decir, no es la ecuación de una curva.
- 1.30 Se trata de una hipérbola.

La ecuación canónica es $(x-1)^2 - \frac{(y+1)^2}{9} = 1$.

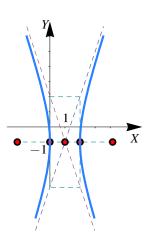


•
$$a^2 = 1 \text{ y } b^2 = 9$$
,

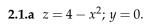
•
$$c^2 = 1 + 9 \implies c = \sqrt{10}$$
,

• Focos
$$(1 \pm \sqrt{10}, -1)$$
.

• Asíntotas:
$$y = \pm \frac{3}{1}(x-1) - 1$$
.

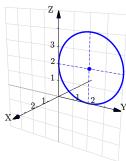


Soluciones del Capítulo 2

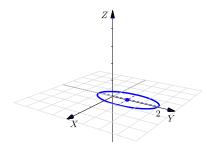




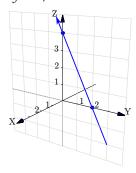
2.1.b
$$(z-2)^2 + (y-2)^2 = 4$$
; $x = 0$.



2.1.c
$$\frac{(y-1)^2}{4} + x^2 = 1; z = 0$$

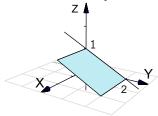


2.1.d
$$z + 2y = 4$$
; $x = 0$

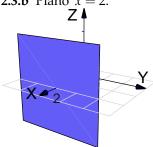


2.2 Es un punto,
$$P = (1, -2, 0)$$

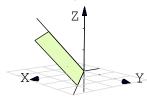
2.3.a Plano
$$2z + y = 2$$
.



2.3.b Plano
$$x = 2$$
.



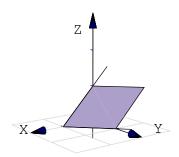
2.3.c Plano x - y - z = 0. Podemos usar las rectas y = x y z = x.



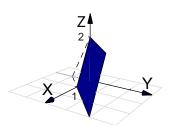
2.3.d Plano x + y - z = 2. Podemos usar las intersecciones con los ejes: x = 2; y = 2; z = -1.

303

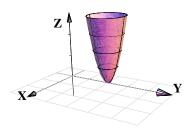
2.3.e Plano 2x + 2y + 2z = 2. Podemos usar las intersecciones con los ejes: x = 1; y = 1; z = 1.



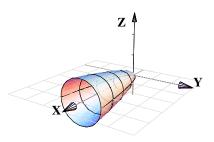
2.4 Plano 4x - 4y + 2z = 4 en el primer octante. En este caso el plano lo dibujamos desde el segmento que va de x = 1 hasta z = 2.



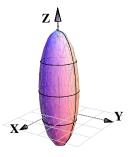
2.5.a $x^2 + (y-2)^2 = z/4$.



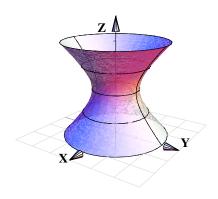
2.5.b $z^2 + y^2 = x/4$



2.5.c
$$x^2 + y^2 + (z - 1)^2 / 9 = 1$$

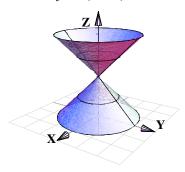


2.5.d
$$x^2 + y^2 - (z-2)^2 = 1$$

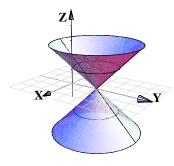


305

2.5.e
$$x^2 + y^2 - (z-2)^2 = 0$$

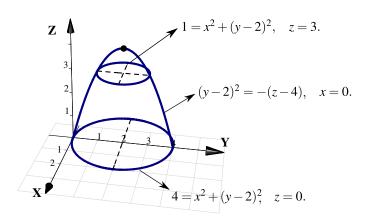


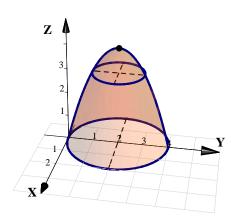
2.5.f
$$x^2 + (y-2)^2 - z^2 = 0$$



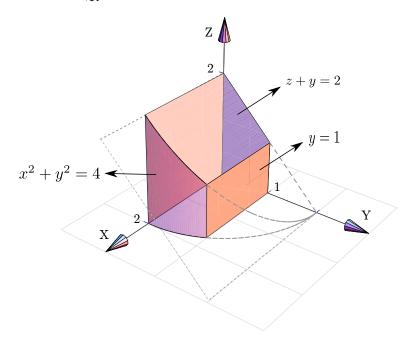
2.6 Se trata del paraboloide $4-z=x^2+(y-2)^2$. El vértice es (0,2,4).

- 1. Si x = 0 entonces $4 z = (y 2)^2$. Por tanto la traza es $(y 2)^2 = -(z 4)$, x = 0.
- 2. Si z = 3 obtenemos la traza $1 = x^2 + (y 2)^2$, z = 3.
- 3. Si z = 0 obtenemos la traza $4 = x^2 + (y 2)^2$, z = 0.

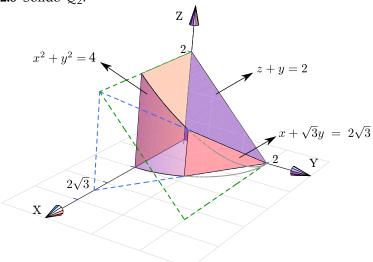




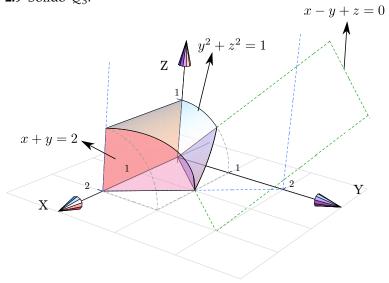
2.7 Sólido Q_1

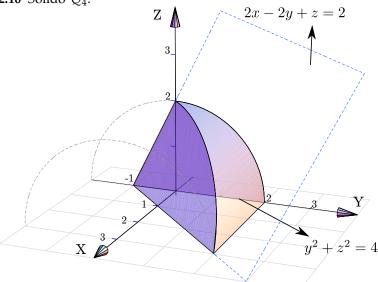


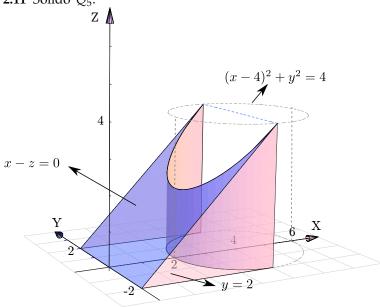
2.8 Sólido *Q*₂.



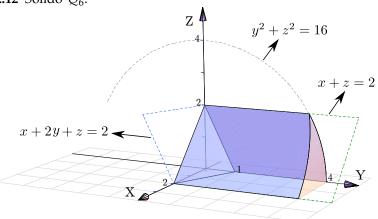
2.9 Sólido *Q*₃.



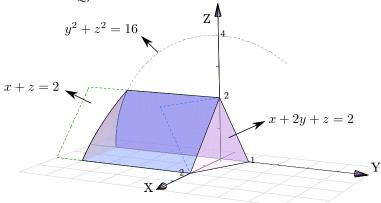




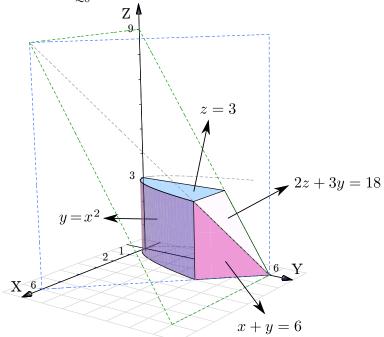
2.12 Sólido *Q*₆.

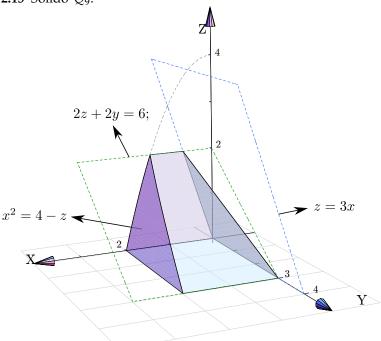


2.13 Sólido *Q*₇.

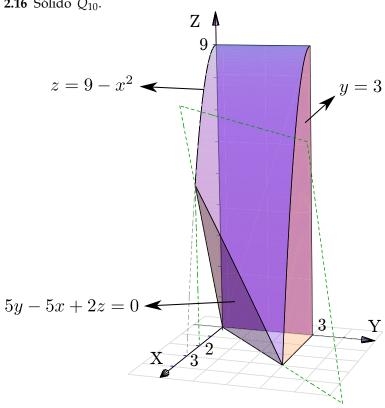


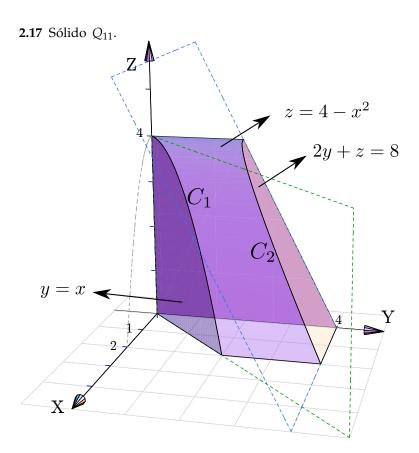
2.14 Sólido *Q*₈.



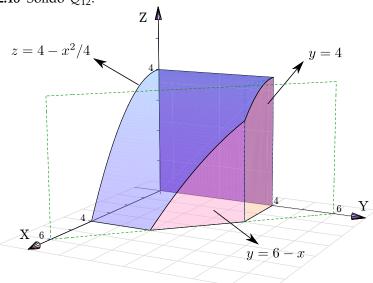


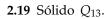
2.16 Sólido *Q*₁₀.

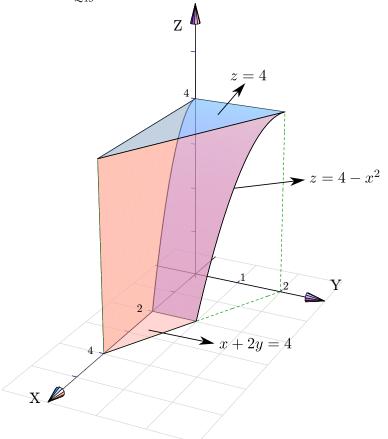




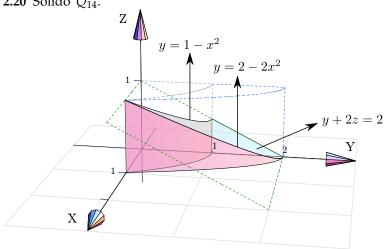
2.18 Sólido *Q*₁₂.

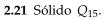


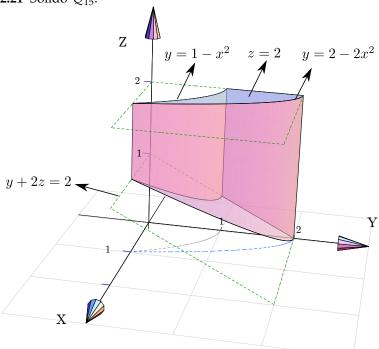




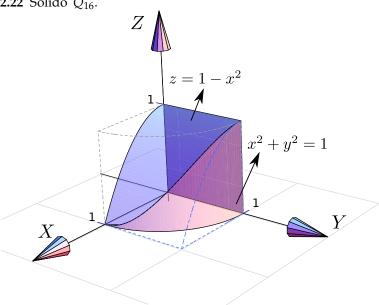
2.20 Sólido Q_{14} .



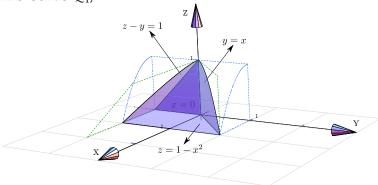




2.22 Sólido *Q*₁₆.



2.23 Sólido *Q*₁₇.



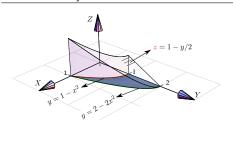
2.24 Proyecciones de Q.

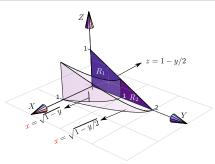


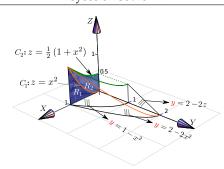
2.25 Proyecciones de *Q*. Proyección sobre *XY*

Proyección sobre YZ

Proyección sobre XZ

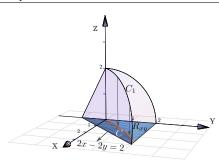






2.26 Proyecciones de Q.

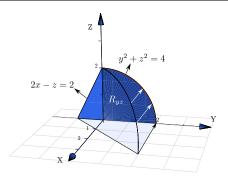
Proyección sobre XY



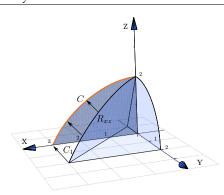
La curva C_1 se proyecta en la curva C en el plano XY. La curva C_1 es la intersección de las superficies $y^2 + z^2 = 4$ y 2x - 2y + z = 2; para calcular su ecuación eliminamos z,

$$\begin{cases} y^2 + z^2 &= 1 \\ & \Longrightarrow y^2 + (2 - 2x + 2y)^2 = 4. \\ 2x - 2y + z &= 2 \end{cases}$$
 (una elipse con rotación).

Proyección sobre YZ



Proyección sobre XZ



La curva C_1 se proyecta en la curva C en el plano XZ. La curva C_1 es la intersección de las superficies $y^2 + z^2 = 1$ y 2x - 2y + z = 2,

$$\begin{cases} y^2 + z^2 &= 1 \\ & \Longrightarrow (-1 + \frac{z}{2} + x)^2 + z^2 = 1. \\ 2x - 2y + z &= 2 \end{cases}$$
 (una elipse con rotación).

Soluciones del Capítulo 3

- **3.1** Un cálculo directo nos da $\frac{9}{-1} = -9$.
- **3.2** Usando coordenadas polares el límite en (0,0) queda $\lim_{r\to 0} r\cos\theta \sin\theta = 0$ y como f(0,0) = c entonces c=0.
- 3.3 Factorizando y simplificando el límite da 1/2.
- **3.4** Usando polares el límite queda $\lim_{r\to 0} \frac{r}{\theta}$. Calculando sobre la hélice $\theta=r$ el límite da 1 y sobre la hélice $\theta=2r$ el límite da 1/2.
- 3.5 Usamos coordenadas polares.
- **3.6** Calcular sobre las rectas x = 0 y y = 0.
- 3.7 Usando la regla para la derivada del cociente,

$$\frac{\partial f}{\partial y} = \frac{\frac{\partial}{\partial y} [xy] \cdot (x^2 - y^2) - \frac{\partial}{\partial y} [x^2 - y^2] \cdot xy}{(x^2 - y^2)^2}$$

$$= \frac{x \cdot (x^2 - y^2) + 2y \cdot xy}{(x^2 - y^2)^2}$$

$$\frac{\partial f}{\partial x} = \frac{\frac{\partial}{\partial x} [xy] \cdot (x^2 - y^2) - \frac{\partial}{\partial x} [x^2 - y^2] \cdot xy}{(x^2 - y^2)^2}$$

$$= \frac{y \cdot (x^2 - y^2) - 2x \cdot xy}{(x^2 - y^2)^2}$$

$$f_y(2,1) = \frac{10}{9}.$$

3.8 Se debe usar la regla de la cadena para funciones de una variable,

$$\frac{\partial f}{\partial y} = 5\ln^4(x^y + x^2 + 2^y) \cdot \frac{\partial}{\partial y} \left[\ln(x^y + x^2 + 2^y) \right]
= 5\ln^4(x^y + x^2 + 2^y) \cdot \frac{1}{x^y + x^2 + 2^y} \cdot (x^y \ln x + 2^y \ln 2)
=
\frac{\partial f}{\partial x} = 5\ln^4(x^y + x^2 + 2^y) \cdot \frac{\partial}{\partial x} \left[\ln(x^y + x^2 + 2^y) \right]
= 5\ln^4(x^y + x^2 + 2^y) \cdot \frac{1}{x^y + x^2 + 2^y} \cdot (y \cdot x^{y-1} + 2x)$$

$$3.9 \qquad \bullet \quad \frac{\partial^2 z}{\partial x^2} = 4a^2 - 2$$

$$\bullet \ \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 4(a^2 + b^2) - 4 = 0. \ \sqrt{}$$

3.10 Sea
$$u = \frac{x^2}{y}$$
, entonces $z = f(u)$

$$\bullet \ \frac{\partial z}{\partial x} = f'(u) \cdot \frac{2x}{y}$$

•
$$x \frac{\partial z}{\partial x} + 2y \frac{\partial z}{\partial y} = f'(u) \left[\frac{2x^2}{y} - \frac{2x^2}{y} \right] = 0 \ \sqrt{ }$$

$$3.11 \qquad \bullet \quad \frac{\partial z}{\partial x} = \frac{y - \frac{y}{x^2 + y^2}}{2z}$$

Ahora sustituimos,

$$zx\frac{\partial z}{\partial x} + zy\frac{\partial z}{\partial y} = zx\frac{y - \frac{y}{x^2 + y^2}}{2z} + zy\frac{x + \frac{x}{x^2 + y^2}}{2z}$$
$$= \frac{2xy - \frac{xy}{x^2 + y^2} + \frac{xy}{x^2 + y^2}}{2z} = xy$$

3.12 Pongamos
$$C(x,t) = \frac{e^{-x^2/kt}}{\sqrt{t}}$$
.

$$\bullet \frac{\partial C}{\partial t} = \frac{\left(\sqrt{t} \frac{-2x}{kt} - \frac{1}{\sqrt{t}}\right) e^{-x^2/kt}}{t} = e^{-x^2/kt} \left(\frac{x^2}{kt^{5/2}} - \frac{1}{2t^{3/2}}\right)$$

•
$$\frac{\partial C}{\partial x} = \frac{1}{\sqrt{t}} \frac{-2x}{kt} e^{-x^2/kt}$$

• Luego, multiplicando $\frac{\partial^2 C}{\partial x^2}$ por $\frac{k}{4}$ se obtiene la identidad.

3.13 z es una función de dos variables pero f es una función de un solo argumento y como tal, se deriva de la manera ordinaria. Aquí es conveniente hacer el cambio de variable $u = x^2y + y$ de tal manera que $z = f(u) \cdot \sqrt{x + y^2}$.

$$\frac{\partial z}{\partial y} = f'(u) \cdot \frac{\partial}{\partial y} [u] \cdot \sqrt{x + y^2} + f(u) \cdot \frac{\partial}{\partial y} \left[\sqrt{x + y^2} \right]
= f'(u) \cdot (x^2 + 1) \cdot \sqrt{x + y^2} + f(u) \cdot \frac{y}{\sqrt{x + y^2}}
=
\frac{\partial z}{\partial x} = f'(u) \cdot \frac{\partial}{\partial x} [u] \cdot \sqrt{x + y^2} + f(u) \cdot \frac{\partial}{\partial x} \left[\sqrt{x + y^2} \right]
= f'(u) \cdot (2xy) \cdot \sqrt{x + y^2} + f(u) \cdot \frac{1}{2\sqrt{x + y^2}}$$

3.14 •
$$u_x = e^y \cos x$$

•
$$u_y = e^y \operatorname{sen} x$$

$$u_{xx} = -e^y \operatorname{sen} x$$

•
$$u_{yy} = e^y \operatorname{sen} x$$

3.15 •
$$u_t = -a\cos(x - at) + \frac{a}{x + at}$$

•
$$u_{tt} = -a^2 \operatorname{sen}(x - at) - \frac{a^2}{(x + at)^2}$$

$$\bullet \ u_x = \cos(x - at) + \frac{1}{x + at}$$

$$u_{xx} = -\operatorname{sen}(x - at) - \frac{1}{(x + at)^2}$$

•
$$u_{tt} = -a^2 \operatorname{sen}(x - at) - \frac{a^2}{(x + at)^2} = a^2 \cdot \left(-\operatorname{sen}(x - at) - \frac{1}{(x + at)^2} \right) = a^2 \cdot u_{xx}.$$

3.16 Sea
$$A = x - at$$
 y $B = x + at$, entonces $u(x,t) = f(A) + f(B)$.

$$u_t = -af'(A) + ag'(B)$$

•
$$u_{tt} = a^2 f''(A) + a^2 g''(B)$$

•
$$u_x = f'(A) + g'(B)$$

•
$$u_{xx} = f''(A) + g''(B)$$

•
$$u_{tt} = a^2 f''(A) + a^2 g''(B) = a^2 \cdot u_{xx}$$
. $\sqrt{ }$

3.17 Satisface
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$$
.

$$z_x = \frac{e^x}{e^x + e^y}$$

$$z_y = \frac{e^y}{e^x + e^y}$$

•
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{e^x}{e^x + e^y} + \frac{e^y}{e^x + e^y} = 1$$
 \checkmark

Satisface
$$\frac{\partial^2 z}{\partial x^2} \cdot \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0.$$

•
$$z_{xx} = \frac{e^x \cdot (e^x + e^y) - e^x \cdot e^x}{(e^x + e^y)^2}$$

•
$$z_{yy} = \frac{e^y \cdot (e^x + e^y) - e^y \cdot e^y}{(e^x + e^y)^2}$$

$$\frac{\partial^{2}z}{\partial x^{2}} \cdot \frac{\partial^{2}z}{\partial y^{2}} - \left(\frac{\partial^{2}z}{\partial x \partial y}\right)^{2} = \frac{e^{x} \cdot (e^{x} + e^{y}) - e^{x} \cdot e^{x}}{(e^{x} + e^{y})^{2}} \cdot \frac{e^{y} \cdot (e^{x} + e^{y}) - e^{y} \cdot e^{y}}{(e^{x} + e^{y})^{2}} - \left(\frac{-e^{y} \cdot e^{x}}{(e^{x} + e^{y})^{2}}\right)^{2}$$

$$= \frac{e^{x} \cdot e^{y}}{(e^{x} + e^{y})^{2}} \cdot \frac{e^{y} \cdot e^{x}}{(e^{x} + e^{y})^{2}} - \left(\frac{-e^{y} \cdot e^{x}}{(e^{x} + e^{y})^{2}}\right)^{2} = 0 \checkmark$$

3.18 Sea $u = y \operatorname{sen}(x)$, entonces w = f(u).

•
$$w_x = f'(u) \cdot y \cos(x)$$

•
$$w_y = f'(u) \cdot \operatorname{sen}(x)$$

•
$$\cos(x)w_x + y\sin(x)w_y = \cos^2(x) \cdot y \cdot f'(u) + \sin^2(x) \cdot y \cdot f'(u) = (\cos^2 x + \sin^2 x) y f'(u) = y f'(u)$$

3.19
$$\frac{\partial g}{\partial x} = 2x \operatorname{sen}(3x - 2y) + 3x^2 \cos(3x - 2y), \quad \frac{\partial g}{\partial y} = -2x^2 \cos(3x - 2y) \quad \text{y} \quad \frac{\partial^2 g}{\partial y \partial x} = -4x \cos(3x - 2y) - 3x^2 \operatorname{sen}(3x - 2y).$$
 La identidad se verifica de manera directa.

3.20 Derivamos a ambos lados respecto a R_1 ,

$$\frac{\partial}{\partial R_1} \left[\frac{1}{R} \right] = \frac{\partial}{\partial R_1} \left[\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right]$$

$$\frac{-1 \cdot \frac{\partial R}{\partial R_1}}{R^2} = \frac{-1}{R_1^2} \Longrightarrow \frac{\partial R}{\partial R_1} = \frac{R^2}{R_1^2}.$$

$$3.21 \qquad \bullet \quad \frac{\partial P}{\partial V} = -\frac{P}{V}$$

3.22
$$\frac{\partial K}{\partial m} \frac{\partial^2 K}{\partial v^2} = \frac{1}{2} v^2 \cdot m = K. \sqrt{}$$

3.23 •
$$\frac{\partial w}{\partial x} = f'(u) \cdot 2x \cdot g(y)$$

•
$$\frac{\partial^2 w}{\partial y \partial x} = 2x[f''(u) \cdot 2y \cdot g(y) + g'(y) \cdot f'(u)]$$

•
$$\frac{\partial w}{\partial y} = f'(u) \cdot 2y \cdot g(y) + g'(y) \cdot f(u)$$

3.24 •
$$\frac{\partial w}{\partial x} = f'(u) \cdot \frac{1}{y} + g'(v) \cdot \frac{-y}{x^2}$$

$$\bullet \ \frac{\partial^2 w}{\partial y \partial x} = f''(u) \cdot \frac{-x}{y^2} \cdot \frac{1}{y} - \frac{1}{y^2} \cdot f'(u) + g''(v) \cdot \frac{1}{x} \cdot \frac{-y}{x^2} - \frac{1}{x^2} \cdot g'(v).$$

3.25 Sea
$$u = x^2 - 4y^2$$
,

3.26

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$
$$= (y^2 + 1) \cdot \cos t + 2xy \cdot \sec^2 t$$

3.27
$$\frac{dw}{dt} = 2t + 2t \operatorname{sen} 2t + 2t^2 \cos 2t$$

3.28

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}
= \left[\sqrt{u + v^2} + \frac{u}{2\sqrt{u + v^2}} \right] \cdot y + \left[\frac{uv}{\sqrt{u + v^2}} \right] \cdot \frac{-y/x^2}{1 + \left(\frac{y}{x} \right)^2}$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}
= \left[\sqrt{u + v^2} + \frac{u}{2\sqrt{u + v^2}} \right] \cdot x + \left[\frac{uv}{\sqrt{u + v^2}} \right] \cdot \frac{1/x}{1 + \left(\frac{y}{x} \right)^2}$$

3.29.a
$$\frac{\partial z}{\partial x} = g(y) \cdot \left[\frac{\partial f}{\partial x} \right]$$

3.29.b
$$\frac{\partial z}{\partial y} = g'(y) \cdot f(x,y) + g(y) \left[\frac{\partial f}{\partial y} \right]$$

3.29.c
$$\frac{\partial z}{\partial t} = g'(y) \cdot 3t^2 \cdot f(x,y) + g(y) \left[\frac{\partial f}{\partial x} \cdot 2t + \frac{\partial f}{\partial y} \cdot 3t^2 \right]$$

$$\frac{\partial z}{\partial u} = g'(y) \cdot 2u \cdot f(x, y) + g(y) \left[\frac{\partial f}{\partial x} \cdot 0 + \frac{\partial f}{\partial y} \cdot 2u \right]$$

3.30 Sea u = xy y v = x, así z = f(u, v).

• Aplicamos regla del producto,

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial u} \cdot y \right] + \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial v} \right]
= 1 \cdot \frac{\partial f}{\partial u} + y \left[\frac{\partial^2 f}{\partial u^2} \cdot x \right] + \left[\frac{\partial^2 f}{\partial u \partial v} \cdot x \right]$$

3.31

$$\frac{\partial z}{\partial u} = \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial x}{\partial u} + \frac{\partial^2 f}{\partial y \partial x} \cdot \frac{\partial y}{\partial u} + \frac{\partial^2 f}{\partial x \partial y} \cdot \frac{\partial x}{\partial u} + \frac{\partial^2 f}{\partial y^2} \cdot \frac{\partial y}{\partial u}$$
$$= \frac{\partial^2 f}{\partial x^2} \cdot 2u + \frac{\partial^2 f}{\partial y \partial x} \cdot 1 + \frac{\partial^2 f}{\partial x \partial y} \cdot 2u + \frac{\partial^2 f}{\partial y^2} \cdot 1$$

$$\frac{\partial z}{\partial v} = \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial x}{\partial v} + \frac{\partial^2 f}{\partial y \partial x} \cdot \frac{\partial y}{\partial v} + \frac{\partial^2 f}{\partial x \partial y} \cdot \frac{\partial x}{\partial u} + \frac{\partial^2 f}{\partial y^2} \cdot \frac{\partial y}{\partial u}
= \frac{\partial^2 f}{\partial x^2} \cdot 1 + \frac{\partial^2 f}{\partial y \partial x} \cdot 2v + \frac{\partial^2 f}{\partial x \partial u} \cdot 1 + \frac{\partial^2 f}{\partial u^2} \cdot 2v$$

3.32 •
$$\frac{\partial z}{\partial x} = 2x \frac{\partial f}{\partial u} + y \frac{\partial f}{\partial v}$$

• Aplicamos la regla del producto,

$$\frac{\partial^{2}z}{\partial x^{2}} = \frac{\partial}{\partial x} \left[2x \frac{\partial f}{\partial u} \right] + \frac{\partial}{\partial x} \left[y \frac{\partial f}{\partial v} \right]
= 2 \frac{\partial f}{\partial u} + 2x \left[2x \frac{\partial^{2}f}{\partial u^{2}} + y \frac{\partial^{2}f}{\partial v \partial u} \right] + y \left[2x \frac{\partial^{2}f}{\partial u \partial v} + y \frac{\partial^{2}f}{\partial v^{2}} \right]$$

• Simplificando se obtiene el resultado.

3.33 Sea $F(x,y,z) = x^2y^2 + \text{sen}(xyz) + z^2 - 4$. Si las derivadas parciales z_x y z_y existen en todo el dominio en el que $F_z \neq 0$, entonces

•
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{2xy^2 + yz\cos(xyz)}{xy\cos(xyz) + 2z}$$

•
$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{2x^2y + xz\cos(xyz)}{xy\cos(xyz) + 2z}$$

• La identidad se obtiene sustituyendo y simplificando.

3.34 En este caso, $F = g\left(\frac{xy}{z}, x^2 + y^2\right)$.

$$\bullet y \cdot \frac{g_u \cdot \frac{y}{z} + g_v \cdot 2x}{g_u \cdot \frac{xy}{z^2}} - x \cdot \frac{g_u \cdot \frac{x}{z} + g_v \cdot 2y}{g_u \cdot \frac{xy}{z^2}} = -\frac{g_u \left(\frac{x^2 - y^2}{z}\right)}{g_u \cdot \frac{xy}{z^2}} = -\frac{z(x^2 - y^2)}{xy} \checkmark$$

3.35 Sea F = z - f(u) con u = z/xy.

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{-f'(u) \cdot \frac{-z}{x^2 y}}{1 - f'(u) \cdot \frac{1}{xy}} = -\frac{z}{x} \cdot \frac{f'(u)}{xy - f'(u)}.$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{-f'(u) \cdot \frac{-z}{xy^2}}{1 - f'(u) \cdot \frac{1}{xy}} = -\frac{z}{y} \cdot \frac{f'(u)}{xy - f'(u)}.$$

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = -x \cdot \frac{z}{x} \cdot \frac{f'(u)}{xy - f'(u)} - y \cdot -\frac{z}{y} \cdot \frac{f'(u)}{xy - f'(u)} = 0 \quad \checkmark$$

3.36 La primera derivada se hace derivando implícitamente; las segundas derivadas son derivadas ordinarias.

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left[-\frac{z \ln(yz)}{x - z} \right] = -\frac{\frac{\partial z}{\partial x} \cdot \ln(yz) + z \cdot \frac{y \cdot \frac{\partial z}{\partial x}}{yz} - \left(1 - \frac{\partial z}{\partial x} \right) \cdot z \ln(yz)}{(x - z)^2}$$

$$= -\frac{\frac{z \ln(yz)}{x - z} \cdot \ln(yz) + z \cdot \frac{y \cdot -\frac{z \ln(yz)}{x - z}}{yz} - \left(1 + \frac{z \ln(yz)}{x - z} \right) \cdot z \ln(yz)}{(x - z)^2}$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left[-\frac{xz}{y(x-z)} \right] = -\frac{x \cdot \frac{\partial z}{\partial y} \cdot y(x-z) - \left(x - z - y \cdot \frac{\partial z}{\partial y} \right) \cdot xz}{y^2(x-z)^2}$$
$$= \frac{x \cdot \frac{xz}{y(x-z)} \cdot y(x-z) - \left(x - z - y \cdot \frac{xz}{y(x-z)} \right) \cdot xz}{y^2(x-z)^2}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left[-\frac{xz}{y(x-z)} \right] = -\frac{\left(z + x \cdot \frac{\partial z}{\partial x}\right) \cdot y(x-z) - \left(y - y \cdot \frac{\partial z}{\partial x}\right) \cdot xz}{y^2(x-z)^2}$$

$$= -\frac{\left(z + x \cdot -\frac{z \ln(yz)}{x-z}\right) \cdot y(x-z) - \left(y - y \cdot -\frac{z \ln(yz)}{x-z}\right) \cdot xz}{y^2(x-z)^2}$$

3.37 Las derivadas parciales que se piden aparecen cuando calculamos $\frac{\partial z}{\partial x}$ y $\frac{\partial z}{\partial y}$. La idea es des-pejar a partir de estos dos cálculos.

$$\begin{cases} \frac{\partial z}{\partial x} &=& \frac{\partial f}{\partial s} \cdot 2x + \frac{\partial f}{\partial t} \cdot y \\ & \Longrightarrow & \frac{\partial f}{\partial t} = \frac{1}{y + 2x^2} \left[\frac{\partial z}{\partial x} + 2x \cdot \frac{\partial z}{\partial y} \right] \\ \frac{\partial z}{\partial y} &=& \frac{\partial f}{\partial s} \cdot -1 + \frac{\partial f}{\partial t} \cdot x \end{cases}$$
 De manera análoga,
$$\frac{\partial f}{\partial s} = \frac{1}{y + 2x^2} \left[\frac{\partial z}{\partial x} - y \cdot \frac{\partial z}{\partial y} \right]$$

3.38.a
$$\nabla f = (-2x, -2y)$$

 $D_{\vec{u}}f(Q) = \nabla f(Q) \cdot \frac{u}{||u||} = (-2, -2) \cdot \frac{(-2, 1)}{\sqrt{5}} = \frac{2}{\sqrt{5}}$

3.38.b

$$D_u f(P) = (-2a, -2b) \cdot (-2, 1) / \sqrt{5} = \sqrt{2} \implies 4a - 2b = \sqrt{10}$$

$$D_v f(P) = (-2a, -2b) \cdot (1, 1) / \sqrt{2} = \sqrt{5} \implies -2a - 2b = \sqrt{10}$$

Entonces, a = 0 y $b = -\sqrt{5/2}$. $P = (0, -\sqrt{5/2}, 3/2)$.

3.38.c La superficie S tiene ecuación $z=4-x^2-y^2$. Si $G=z-4+x^2+y^2$ entonces un vector normal al plano es $N=\nabla G(R)=(2,-2,1)$. Luego la ecuación cartesiana es 2x-2y+z=6.

3.38.d $D_u f(R)$ es máxima si $\vec{u} = \nabla f(R) = (-2,2)$. En este caso, $D_{\nabla f(R)} f(R) = ||\nabla f(R)|| = \sqrt{8}$.

3.39.a
$$\nabla f = \left(-\frac{2x + yz}{xy + 3z^2}, \frac{-xz}{xy + 3z^2}\right)$$

 $D_{\vec{u}}f(Q) = \nabla z(Q) \cdot \frac{\vec{v}}{||\vec{v}||} = (-1,0) \cdot \frac{(-2,1)}{\sqrt{5}} = \frac{2}{\sqrt{5}}$

3.39.b
$$D_{\vec{v}}z(P) = (-2/b, 0) \cdot (-2, 1)/\sqrt{5} = \sqrt{2} \implies b = 4/\sqrt{10}$$

3.39.c La superficie S tiene ecuación $G(x,y,z)=x^2+xyz+z^3-1$, entonces $\nabla G=(2x+yz,xz,xy+3z^2)$. Un vector normal al plano es $N=\nabla G(R)=(1,1,2)$. Luego la ecuación cartesiana es x+y+2z=2.

3.39.d $D_u z(R)$ es mínima si $\vec{u} = -\nabla z(R) = (1/2, 1/2)$. En este caso, $D_{\nabla z(R)} z(R) = -||\nabla z(R)|| = -\sqrt{1/2}$.

3.40.a z = z(x,y) está definida de manera implícita. Sea $F(x,y,z) = z^3 + xz + y - 1$.

$$\nabla z = \left(-\frac{F_x}{F_z}, -\frac{F_y}{F_z},\right) = \left(-\frac{z}{3z^2 + x}, -\frac{1}{3z^2 + x}\right);$$

$$D_{\vec{u}}z(P) = \nabla z(P) \cdot \frac{(1,-2)}{\sqrt{5}}$$
$$= (0,-1) \cdot \frac{(1,-2)}{\sqrt{5}} = 2/\sqrt{5} \approx 0.894427.$$

3.40.b El máximo valor que podría alcanzar la derivada direccional en P es $||\nabla z(P)|| = 1$ cuando $\vec{v} = \nabla z(P) = (0, -1)$.

3.40.c Como la superficie S tiene ecuación $G(x,y,z)=z^3+xz+y-1$, la ecuación cartesiana del plano tangente en el punto P es $\nabla G(P) \cdot (x,y,z) = \nabla G(P) \cdot P$.

- $\nabla G(x,y,z) = (z,1,3z^2 + x)$
- \bullet $N = \nabla G(1,1,0) = (0,1,1)$

La ecuación cartesiana del plano tangente en el punto P es y + z = 1.

3.41.a z = z(x,y) está definida de manera implícita. Sea $F(x,y,z) = xyz^2 - 8z$.

$$\nabla z = \left(-\frac{F_x}{F_z}, -\frac{F_y}{F_z},\right) = \left(-\frac{yz^2}{2zxy - 8}, -\frac{xz^2}{2zxy - 8}\right);$$

$$D_{\vec{u}}z(P) = \nabla z(P) \cdot \frac{(-5,\sqrt{2})}{\sqrt{27}}$$
$$= (-8,-8) \cdot \frac{(-5,\sqrt{2})}{\sqrt{27}} = \frac{40-8\sqrt{2}}{\sqrt{27}} \approx 5.52068$$

3.41.b El máximo valor que podría alcanzar la derivada direccional en P es $||\nabla z(P)|| = \sqrt{2 \cdot 8^2}$ cuando $\vec{v} = \nabla z(P) = (-8, -8)$.

3.41.c Como la superficie S tiene ecuación $G(x,y,z)=xyz^2-8z$, la ecuación cartesiana del plano tangente en el punto P es $\nabla G(P)\cdot (x,y,z)=\nabla G(P)\cdot P$.

- $\bullet \nabla G(x,y,z) = (yz^2, xz^2, 2xyz 8)$
- \bullet $N = \nabla G(1,1,8) = (64,64,8)$

La ecuación cartesiana del plano tangente en el punto P es 64x + 64y + 8z = 192.

3.42 La recta normal L pasa por P y va en la dirección de un vector normal a la superficie S e P. Podemos tomar $N = \nabla G(P) = (1,1,2/\sqrt{2})$, así una ecuación vectorial de la recta es $L: (x,y,z) = P + t(1,1,2/\sqrt{2})$, $t \in \mathbb{R}$.

Soluciones del Capítulo 4

4.1 Puntos críticos.

$$\begin{cases} \frac{\partial f}{\partial x} = 4x^3 - 4y = 0 \implies y = x^3, \\ \frac{\partial f}{\partial y} = 4y^3 - 4x = 0 \implies x(x^8 - 1) = 0 \implies \begin{cases} x = 0 \\ x = \pm 1 \end{cases}$$

Puntos críticos: (0,0), (1,1), (-1,-1).

Clasificación. $D_2(x,y) = f_{xx} \cdot f_{yy} - (f_{xy})^2 = 12x^2 \cdot 12y^2 - 16$.

P	$f_{xx}(P)$	$f_{yy}(P)$	$(f_{xy}(P))^2$	$D_2(P)$	Clasificación
(0,0)	0	0	16	-16	(0,0,1) es punto de silla.
(1,1)	12	12	16	128	(1,1,-1) es mínimo local.
(-1,-1)	12	12	16	128	(-1, -1, -1) es mínimo local

4.2 Puntos críticos.

$$\begin{cases} f_x = 3x^2 + 3y^2 - 6x & = & 0 & (E1) \\ f_y = 6xy - 6y & = & 0 & (E2) \end{cases} \implies \begin{cases} 3(x^2 + y^2 - 2x) & = & 0 \\ 6y(x - 1) & = & 0 \implies y = 0 \text{ o } x = 1. \end{cases}$$

 \bullet Si y = 0, sustituyendo en (E1) queda

• Si
$$x = 1$$
, sustituyendo en $(E1)$ queda

$$3(x^2 - 2x) = 0 \implies x = 0, x = 2.$$

$$3(y^2-1)=0 \implies y=1, y=-1.$$

Finalmente, tenemos cuatro puntos críticos: (0,0), (2,0), (1,1) y (1,-1).

Clasificación.

$$D_2(x,y) = f_{xx} \cdot f_{yy} - (f_{xy})^2 = (6x - 6) \cdot (6x - 6) - 36y^2.$$

- En (0,0) f alcanza un máximo relativo, pues $D_2(0,0) = 36 > 0$ y $f_{xx}(0,0) = -6 < 0$.
- En (2,0) f alcanza un mínimo relativo pues $D_2(2,0) = 36 > 0$ y $f_{xx}(2,0) = 6 > 0$.
- En (1,1) f no alcanza un extremo pues $D_2(1,1) = -36 < 0$ (punto de silla).
- En (1,-1) f no alcanza un extremo pues $D_2(1,-1) = -36 < 0$ (punto de silla).
- **4.3** Como P = (1,2) es punto crítico, las derivadas parciales de z se anulan en P, es decir

$$\begin{cases} \frac{\partial z}{\partial x}\Big|_{(1,2)} &= 0 \\ \frac{\partial z}{\partial x}\Big|_{(1,2)} &= 0 \end{cases} \implies \begin{cases} \left(y - \frac{a}{x^2}\right)\Big|_{(1,2)} &= 0 \\ \left(x - \frac{b}{y^2}\right)\Big|_{(1,2)} &= 0 \end{cases} \implies \begin{cases} 2 - \frac{a}{1^2} &= 0 \\ 1 - \frac{b}{2^2} &= 0 \end{cases} \implies a = 2 \text{ y } b = 4$$

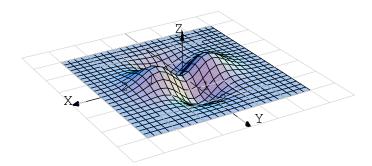
Ahora, $D_2(x,y) = \left(\frac{2a}{x^3}\right) \left(\frac{2b}{y^3}\right) - 1^2 = \left(\frac{4}{x^3}\right) \left(\frac{8}{y^3}\right) - 1.$

- $D_2(1,2) = 3$ y $z_{xx}(1,2) = 4 > 0$. Luego, en el punto P = (2,1) z alcanza un mínimo relativo.
- 4.4 Puntos críticos: Resolvemos el sistema,

$$\begin{cases} z_x = 8x - y = 0 \implies 8x = y \\ z_y = -x + 2y = 0 \implies 2y = x \end{cases} \implies 16y = y \implies y = 0$$

así, el único punto crítico es (0,0).

- Test: $Det(D_2(x,y)) = 8 \cdot 2 \cdot -(-1)^2 = 15$ (es constante) y puesto que $z_{xx} = 8 > 0$, entonces = (0,0,0) es un mínimo relativo.
- **4.5** La gráfica de f es,



• Puntos críticos: El sistema es $\begin{cases} z_x = 2xe^{-x^2-y^2} - 2xe^{-x^2-y^2}(x^2-y^2) = 0\\ z_y = -2ye^{-x^2-y^2} - 2ye^{-x^2-y^2}(x^2-y^2) = 0 \end{cases}$

Simplificando queda
$$\begin{cases} e^{-x^2-y^2}2x(1-x^2+y^2) & = & 0 \\ -e^{-x^2-y^2}2y(1+x^2-y^2) & = & 0 \end{cases}$$

como $e^{-x^2-y^2} > 0$ entonces nos queda el sistema

$$\begin{cases} 2x(1-x^2+y^2) = 0\\ -2y(1+x^2-y^2) = 0 \end{cases}$$

Tenemos 4 casos:

• caso 1.) 2x = 0 y 2y = 0. Entonces x = 0 y y = 0.

- CASO 2.) 2x = 0 y $(1 + x^2 y^2) = 0$. Entonces x = 0 y $y = \pm 1$
- CASO 3.) -2y = 0 y $(1 x^2 + y^2) = 0$. Entonces y = 0 y $x = \pm 1$
- CASO 4.) $(1-x^2+y^2)=0$ y $(1+x^2-y^2)=0$. Este caso es inconsistente pues quedaría

$$x^2 - y^2 = 1$$
 y $x^2 - y^2 = -1$

ullet Test: Calculamos Det(H) y evaluamos cada uno de los cinco puntos.

$$z_{xx} = 2e^{-x^2 - y^2}(2x^4 - x^2(2y^2 + 5) + y^2 + 1)$$

$$z_{yy} = 2e^{-x^2-y^2}(x^2(2y^2-1)-2y^4+5y^2-1)$$

$$z_{xy} = 4xye^{-x^2-y^2}(x^2-y^2)$$

Luego tenemos:

- Para P = (0,0,0), $D_2(P) = -4$. P es un punto de silla.
- Para (0,1,-1/e), $D_2(P) = 2.165 > 0$ $z_{xx} = 1.47 < 0$. Se trata de un mínimo relativo.
- Para (0, -1, -1/e), $D_2(P) = 2.165 > 0$ $z_{xx} = 1.47 < 0$. Se trata de un mínimo relativo.
- Para (1,0,1/e), $D_2(P) = 2.165 > 0$ $z_{xx} = -1.47 < 0$. Se trata de un máximo relativo.
- Para (-1,0,-1/e), $D_2(P)=2.165>0$ $z_{xx}=-1.47<0$. Se trata de un máximo relativo.
- **4.6** La distancia del punto al paraboloide es $d(x,y) = \sqrt{(x-2)^2 + (y-2)^2 + (x^2+y^2)^2}$.

Puntos críticos: Debemos resolver el sistema

$$x-2+2x(x^2+y^2) = 0$$

 $y-2+2y(y^2+y^2) = 0$

Como x = 0, y = 0 no es solución del sistema, podemos asumir que $x \neq 0$ y $y \neq 0$. Luego, despejando $x^2 + y^2 = \frac{2-x}{2x} = \frac{2-y}{2y} \implies x = y$.

Ahora, sustiyendo x = y en cualquiera de las ecuaciones, obtenemos $x - 2 + 4x^3 = 0$. La calculadora nos da las soluciones x = 0.68939835..., y = 0.68939835...

Clasificación. $D_2(x,y) = [(1+4x^2+2(x^2+y^2)] \cdot [1+4y^2+2(x^2+y^2)] - 16x^2y^2$. Evaluamos $D_2(0.68939835...,0.68939835...) = 19.4466... > 0 y <math>f_{xx}(0.68939835...,0.68939835...) > 0$, es decir, el punto en el paraboloide dónde se alcanza la distancia mínima al punto (2,2,2) es (0.68939835...,0.68939835...,2(0.68939835...,0.68939835...).

4.7 Suponga que las dimensiones de la caja son x cm de ancho, y cms de largo y z cms de alto, entonces su volumen es :

$$512 = xyz \Longrightarrow z = \frac{512}{xy}$$

Por otro lado, el costo total esta dado por c(x,y,z) = 20xz + 20yz + 40xy

De donde obtenemos que

$$c(x,y) = \frac{10240}{x} + \frac{10240}{y} + 40xy$$

Calculando las derivadas parciales, formamos el siguiente sistema

$$\begin{cases} \frac{\partial c}{\partial x} = 40y - \frac{10240}{x^2} = 0 & \text{(E1)} \\ \frac{\partial c}{\partial y} = 40x - \frac{10240}{y^2} = 0 & \text{(E2)} \end{cases}$$

Multiplicando por (E1) por x a ambos lados y (E2) por y ambos lados, obtenemos $\frac{10240}{x} = \frac{10240}{y}$, es decir, x = y. Sustituyendo en (E1) obtenemos $x = y = \sqrt[3]{256}$

$$c_{xx} = \frac{20480}{x^3}$$

$$D_2(x,y) = -1600 + \frac{419430400}{x^3 y^3}$$

y al evaluar en el punto $P = (\sqrt[3]{256}, \sqrt[3]{256})$, tenemos que

$$c_{xx}(P) = 80 > 0$$

$$D_2(P) = 4800 > 0$$

Con lo cual las dimensiones de la caja con costo mínimo son $x = \sqrt[3]{256}$, $y = \sqrt[3]{256}$ y $z = 8\sqrt[3]{4}$.

4.10 El área de la superficie es S(x,y,h)=2xh+2yh+2xy=64. Despejando h obtenemos que le volumen es $V=xy\frac{32-xy}{x+y}$. Resolviendo $\nabla V=(0,0)$ obtenemos $x=y=\sqrt{32/3}$.

4.11 Problema: "Maximizar $V(r,h)=\pi r^2 h$ sujeto a $48\pi=2\pi r h+\pi r^2$."

•
$$L(r,h,\lambda) = \pi r^2 h - \lambda (2rh + r^2 - 48)$$
.

Ahora,
$$\lambda = \lambda \implies \frac{\pi rh}{h+r} = \frac{\pi}{2}r \implies r(h-r) = 0 \implies r = h \ (r > 0).$$

Luego, sustituimos r = h en la ecuación (3) :

$$2rh + r^2 = 48 \implies 2h^2 + h^2 = 48 \implies h = \pm 4.$$

 \therefore Las dimensiones son h = 4 y r = 4.

4.12.a Como $xy^2z = 32$ entonces x, y ni z puede ser nulos (sino el producto sería 0).

4.12.b Problema: "Minimizar d(Q,O) sujeto a la restricción $xy^2z = 32$."

"Minimizar $d = \sqrt{x^2 + y^2 + z^2}$ sujeto a la restricción $xy^2z = 32$."

sea
$$L(x,y,z,\lambda) = \sqrt{x^2 + y^2 + z^2} - \lambda(xy^2z - 32) = \sqrt{x^2 + y^2 + z^2} - \lambda xy^2z - 32\lambda$$
.

Puntos críticos.

$$\begin{cases} L_x = 0 \\ L_y = 0 \\ L_z = 0 \\ L_\lambda = 0 \end{cases} \implies \begin{cases} \frac{x}{\sqrt{x^2 + y^2 + z^2}} - \lambda y^2 z = 0 \text{ (E1)} \\ \frac{y}{\sqrt{x^2 + y^2 + z^2}} - 2\lambda xyz = 0 \text{ (E2)} \\ \frac{z}{\sqrt{x^2 + y^2 + z^2}} - \lambda xy^2 = 0 \text{ (E3)} \\ xy^2 z - 32 = 0 \text{ (E4)} \end{cases}$$

Como x, y y z son no nulos, podemos despejar λ en las ecuaciones (E1), (E2) y (E3),

$$\lambda = \underbrace{\frac{2x^2 = y^2}{x}}_{y^2 z \sqrt{x^2 + y^2 + z^2}} = \underbrace{\frac{y}{2xyz\sqrt{x^2 + y^2 + z^2}}}_{zyz\sqrt{x^2 + y^2 + z^2}} = \underbrace{\frac{z}{xy^2\sqrt{x^2 + y^2 + z^2}}}_{zyz\sqrt{x^2 + y^2 + z^2}},$$

de donde obtenemos $2x^2 = y^2$ y $y^2 = 2z^2$, es decir $x = \pm z$ y $y^2 = 2z^2$.

Sustituyendo en la ecuación (E4) nos queda $z \cdot 2z^2 \cdot z = 2z^4 = 32$, es decir $z = \pm 2$.

Finalmente, como $y^2 > 0$ y como $xy^2z = 32$ entonces x y z deben tener el mismo signo, es decir, x = z y $y = \pm \sqrt{2}z$. Tenemos solo cuatro posibles soluciones,

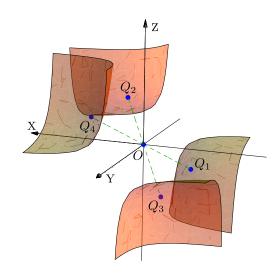
$$Q_1 = (-2, -2\sqrt{2}, 2); \quad \lambda = 1/8,$$

$$Q_2 = (2, -2\sqrt{2}, 2); \quad \lambda = 1/8,$$

$$Q_3 = (-2, 2\sqrt{2}, -2); \quad \lambda = 1/8,$$

$$Q_4 = (-2, 2\sqrt{2}, -2); \quad \lambda = 1/8.$$

Como $d(Q_1, O) = d(Q_2, O) = d(Q_3, O) = d(Q_4, O)$, los cuatro puntos son los puntos de S más cercanos al origen.



4.13 Problema: "Minimizar $A=3\pi r^2+2\pi rh$ sujeto a la restricción $V=\pi r^2h+\frac{2}{3}\pi r^3=400$ "

La altura total es $h+r\approx 8.49 \mathrm{m}$ y el diámetro es $d\approx 8.49 \mathrm{m}$

4.14 Problema: "Maximizar $\rho=2+xz+y^2$ sujeto a la restricción $x^2+y^2+z^2-4=0$ " Hay cuatro puntos críticos: $(0,\pm 2,0), (\pm \sqrt{2},0,\pm \sqrt{2}), (\pm \sqrt{2},0,\mp \sqrt{2})$. Evaluando ρ en los seis puntos encontramos que ρ es máximo en los puntos $(0,\pm 2,0)$ y mínimo en los puntos $(\pm \sqrt{2},0,\mp \sqrt{2})$.

4.15
$$x = 3/2$$
, $y = 3/2$, $\lambda = -3$.

4.17
$$\lambda = 0$$
, $x = -1$, $y = 0$,

$$\lambda = 0, x = 1, y = 0,$$

$$\lambda = 0, y = -1, x = 0,$$

$$\lambda = 0, y = 1, x = 0,$$

$$\lambda = \frac{1}{2}, x = -\frac{1}{\sqrt{2}}, y = -\frac{1}{\sqrt{2}}$$

$$\lambda = \frac{1}{2}, \ x = -\frac{1}{\sqrt{2}}, \ y = \frac{1}{\sqrt{2}},$$

$$\lambda = \frac{1}{2}, \ x = \frac{1}{\sqrt{2}}, \ y = -\frac{1}{\sqrt{2}},$$

$$\lambda = \frac{1}{2}, \ x = \frac{1}{\sqrt{2}}, \ y = \frac{1}{\sqrt{2}}.$$

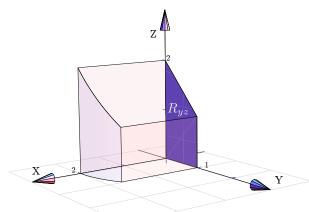
4.29
$$x = \pm 1/3$$
, $y = \pm 3$, $z = \pm 4/3$, $w_{max} = 2\sqrt{3}/3$

Soluciones del Capítulo 5

5.1 El cálculo es fácil proyectando sobre *XY* o *YZ*.

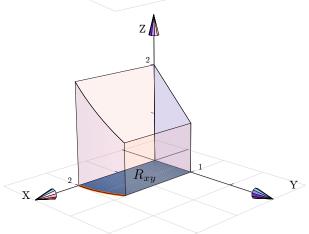
Proyección sobre YZ.

$$V_Q = \int_0^1 \int_0^{2-y} \left[\sqrt{4 - y^2} - 0 \right] dz dy$$



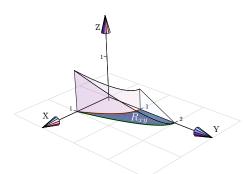
Proyección sobre XY.

$$V_Q = \int_0^1 \int_0^{\sqrt{4-y^2}} [2 - y - 0] \, dx \, dy$$



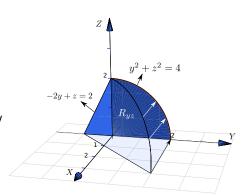
Proyectando sobre XY.

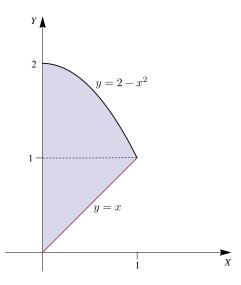
$$V_Q = \int_0^1 \int_{1-x^2}^{2-2x^2} \left[1 - y/2 - 0\right] dy dx$$



Proyectamos sobre YZ.

5.3
$$V_Q = \int_{-1}^0 \int_0^{2+2y} \left[1 - z/2 + y - 0\right] dz dy + \int_0^2 \int_0^{\sqrt{4-y^2}} \left[1 - z/2 + y - 0\right] dz dy$$





5.4
$$A_R = \int_0^1 \int_x^{2-x^2} dy \, dx = 7/6$$

5.5 Cuidado, debe escoger la rama correcta en cada parábola.

$$\iint_{R} f(x,y) dA = \int_{0}^{2} \int_{-2+\sqrt{2-y}}^{3-\sqrt{y}} f(x,y) dx dy$$

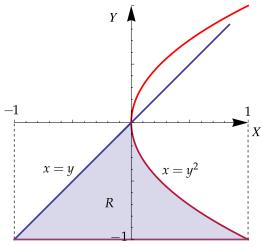
$$\iint_{R} f(x,y) dA = \int_{-2}^{-2+\sqrt{2}} \int_{2-(x+2)^{2}}^{2} f(x,y) \, dy \, dx + \int_{-2+\sqrt{2}}^{3-\sqrt{2}} \int_{0}^{2} f(x,y) \, dy \, dx + \int_{3-\sqrt{2}}^{3} \int_{0}^{(x-3)^{2}} f(x,y) \, dy \, dx$$

5.6 Cuidado, debe tener el cuidado de escoger la rama correcta en la parábola y el signo correcto en la elipse.

$$\iint_{R} f(x,y) dA = \int_{-2}^{0} \int_{2-(x+2)^{2}}^{x+4} f(x,y) \, dy \, dx + \int_{0}^{2} \int_{x-2}^{4-2\sqrt{4-(x-2)^{2}}} f(x,y) \, dy \, dx$$

$$\iint_{R} f(x,y) dA = \int_{-2}^{0} \int_{-2+\sqrt{2-y}}^{y+2} f(x,y) dx dy + \int_{0}^{2} \int_{-2+\sqrt{2-y}}^{\frac{1}{2} \left(4-\sqrt{8y-y^{2}}\right)} f(x,y) dx dy \int_{2}^{4} \int_{y-4}^{\frac{1}{2} \left(4-\sqrt{8y-y^{2}}\right)} f(x,y) dx dy$$

5.7.a $-1 \le y \le 0$ y la región está entre las curvas x = y y $x = y^2$.



5.7.b
$$A_R = \int_{-1}^0 \int_{-1}^x 1 \cdot dy \, dx + \int_0^1 \int_{-1}^{-\sqrt{x}} 1 \cdot dy \, dx$$

5.7.c
$$A_R = \int_{-1}^0 \int_y^{y^2} 1 \cdot dx \, dy = \int_{-1}^0 (y^2 - y) \, dy = \frac{y^3}{3} - \frac{y^2}{2} \Big|_{-1}^0 = \frac{5}{6}.$$

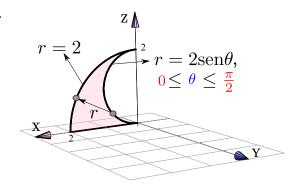
5.9
$$I = 3/4(e - e^{-1})$$
.

Solución: La manera fácil es proyectar sobre *XZ* y usar coordenadas polares,

$$V_Q = \iint_{R_{xz}} 4 - x \, dA$$

$$= \int_0^{\pi/2} \int_{2 \operatorname{sen} \theta}^2 (4 - r \cos \theta) \cdot r \, dr \, d\theta$$

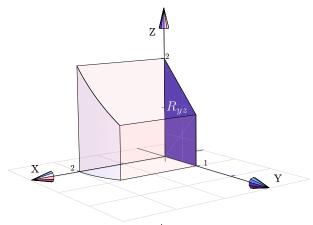
$$= 2\pi - 2$$



5.17 El cálculo es fácil proyectando sobre *XY* o *YZ*.

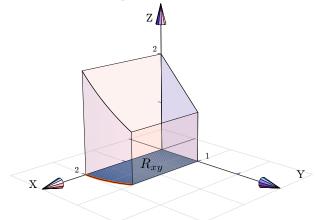
Proyección sobre YZ.

$$V_{Q} = \int_{0}^{1} \int_{0}^{2-y} \left[\int_{0}^{\sqrt{4-y^{2}}} dx \right] dz dy$$



Proyección sobre XY.

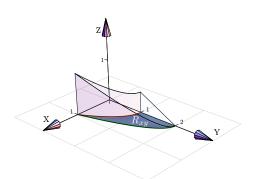
$$V_{Q} = \int_{0}^{1} \int_{0}^{\sqrt{4-y^{2}}} \left[\int_{0}^{2-y} dz \right] dx dy$$



Proyectando sobre XY.

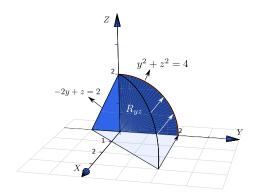
5.18

$$V_Q = \int_0^1 \int_{1-x^2}^{2-2x^2} \left[\int_0^{1-y/2} dz \right] dy dx$$



Proyectamos sobre YZ.

5.19
$$V_{Q} = \int_{-1}^{0} \int_{0}^{2+2y} \left[\int_{0}^{1-z/2+y} dx \right] dz dy + \int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \left[\int_{0}^{1-z/2+y} dx \right] dz dy$$



5.20
$$V_C = \int_0^{2\pi} \int_0^a \int_0^{h-hr/a} r \, dz \, dr \, d\theta = \frac{\pi a^2 h}{3}$$

5.21
$$V_Q = \int_0^{2\pi} \int_0^{1/\sqrt{2}} \int_r^{\sqrt{1-r^2}} r \, dz \, dr \, d\theta = \frac{\pi}{3} \left(2 - \sqrt{2} \right)$$

5.22
$$V_Q = \int_0^{2\pi} \int_0^1 \int_r^{\sqrt{4-r^2}} r \, dz \, dr \, d\theta = 2\pi \left(\frac{8}{3} - \sqrt{3}\right)$$

5.23.b
$$\frac{8\pi^2}{3} - 2\sqrt{3}\pi$$
.

5.24
$$\iiint_{Q} \frac{1}{\sqrt{x^2 + z^2 + 1}} dV = \int_{0}^{\pi/2} \int_{0}^{1} \int_{1}^{4} \frac{r}{r+1} dy dr d\theta + \int_{0}^{\pi/2} \int_{1}^{2} \int_{r^2}^{4} \frac{r}{r+1} dy dr d\theta.$$
 Para terminar el cálculo, observe que (dividiendo) $\frac{r}{r+1} = 1 - \frac{1}{r+1}$ y que $\frac{r^3}{r+1} = r^2 - r + 1 - \frac{1}{r+1}$.

5.25 La proyección sobre XY es la región limitada por la recta x + y = 2 en el primer cuadrante.

$$V_Q = \int_0^2 \int_0^{2-x} \int_{\sqrt{4-x^2}}^4 dz \, dy \, dx$$

5.27
$$V_Q = \int_0^{2\pi} \int_0^{\pi/4} \int_0^1 \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = \frac{\pi}{3} \left(2 - \sqrt{2} \right)$$

5.28 Como $z = \rho \cos \varphi = h$, entonces el sólido se puede describir en coordenadas polares como

$$0 \le \rho \le \frac{h}{\cos \varphi}$$
, $0 \le \theta \le 2\pi$ y $0 \le \varphi \le \arctan(a/h)$.

Esta integral es sencilla (aunque no parece). Recuerde que $\cos \varphi = \frac{h}{\sqrt{a^2 + h^2}}$, con esto la integral simplifica my bien.

$$V_C = \int_0^{2\pi} \int_0^{\arctan(a/h)} \int_0^{h/\cos\varphi} \rho^2 \operatorname{sen} \varphi \, d\rho \, d\varphi \, d\theta = \frac{\pi a^2 h}{3}$$

5.30 Como z = a - h entonces $\rho \cos \varphi = a - h$. Así Q se describe en coordenadas esféricas como

$$\frac{a-h}{\cos \varphi} \le \rho \le a$$
, $0 \le \theta \le 2\pi$, $y \ 0 \le \varphi \le \pi/2 - \arcsin(\frac{a-h}{a})$.

$$\begin{split} \iiint_{\mathbb{Q}} dV &= \int_{0}^{2\pi} \int_{0}^{\pi/2 - \operatorname{arcsen}(\frac{a-h}{a})} \int_{\frac{a-h}{\cos \varphi}}^{a} \rho^{2} \operatorname{sen} \varphi d\rho d\varphi d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{\pi/2 - \operatorname{arcsen}(\frac{a-h}{a})} \frac{\rho^{3} \operatorname{sen} \varphi}{3} \Big|_{\frac{a-h}{\cos \varphi}}^{a} d\varphi d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{\pi/2 - \operatorname{arcsen}(\frac{a-h}{a})} \frac{1}{3} \left[a^{3} \operatorname{sen} \varphi - (a-h)^{3} \operatorname{sec}^{3} \varphi \operatorname{sen} \varphi \right] d\varphi d\theta \\ &= \int_{0}^{2\pi} \frac{1}{3} \left[-a^{3} \cos \varphi - (a-h)^{3} \frac{1}{2 \cos^{2} \varphi} \right]_{0}^{\pi/2 - \operatorname{arcsen}(\frac{a-h}{a})} d\theta \quad \text{pues} \quad \int \operatorname{sec}^{3} \varphi \operatorname{sen} \varphi d\varphi = \frac{\operatorname{sec}^{2} \varphi}{2} + K \quad \text{(sustitución)}. \\ &= \int_{0}^{2\pi} \frac{1}{3} \left[\frac{3ah^{2} - h^{3}}{2} \right] d\theta \quad \text{pues} \quad \cos \left(\pi/2 - \operatorname{arcsen} \left(\frac{a-h}{a} \right) \right) = \frac{a-h}{a}. \\ &= \frac{\pi}{3} \left(3ah^{2} - h^{3} \right) \end{split}$$

Soluciones del Capítulo 6

6.2 Parametrización de curvas.

- $-C_1$: $r_1(t) = (t, 2t, 0)$ con $t \in [0, 1]$. Observe que $r_1(0) = (0, 0, 0)$ y $r_1(1) = (1, 2, 0)$.
- C_2 : $r_2(t) = (0,0,t)$ con $t \in [0,1]$. Observe que $r_2(0) = (0,0,0)$ y $r_2(1) = (0,0,1)$.
- $-C_3$: $r_3(t) = (\cos t, 2\cos t, \sin t)$ con $\in [0, \pi/2]$. Observe que $r_3(0) = (1, 2, 0)$ y $r_3(\pi/2) = (0, 0, 1)$.

6.3 Parametrización de curvas.

- C_1 : $r_1(t) = (2\cos t, 0, 2\sin t) \cos t \in [0, \pi/2]$. Observe que $r_1(0) = (2, 0, 0) \text{ y } r_1(\pi/2) = (0, 0, 2)$.
- C_2 : $r_2(t) = (2\cos t, 4 2\cos t, 2\sin t) \text{ con } t \in [0, \pi/2].$ Observe que $r_2(0) = (2, 2, 0) \text{ y } r_2(\pi/2) = (0, 4, 2).$
- $-C_3$: $r_3(t) = (t, 4 t, 0)$ con $t \in [0, 2]$. Observe que $r_3(0) = (0, 4, 0)$ y $r_3(2) = (2, 2, 0)$.
- $-C_4$: $r_4(t) = (\cos t, 4 \cos t, 1 + \sin t)$ con $t \in [-\pi/2, \pi/2]$. Observe que $r_4(-\pi/2) = (0, 4, 0)$ y $r_4(\pi/2) = (0, 4, 2)$.

6.4 Una parametrización de C es r(t) = (t,t,t) con $t \in [1,2]$. Luego, r'(t) = (1,1,1) y entonces

$$\int_{\mathbf{C}} \frac{x+y+z}{x^2+y^2+z^2} \, ds = \int_{1}^{2} \frac{t+t+t}{t^2+t^2+t^2} \, \sqrt{1^2+1^2+1^2} \, dt$$
$$= \int_{1}^{2} \frac{\sqrt{3}}{t} \, dt = \sqrt{3} \ln|t| \Big|_{1}^{2} = \sqrt{3} \ln 2$$

6.5.a
$$-\frac{64}{3}$$

6.5.b
$$\int_{C_1} F \cdot d\mathbf{r} + \int_{C_2} F \cdot d\mathbf{r} + \int_{C_3} F \cdot d\mathbf{r} + \int_{C_4} F \cdot d\mathbf{r} = 4 - 36 + 28/3 + 4/3 = -\frac{64}{3}$$

6.8 Solución: Parametrizamos las curvas,

$$C_1: r_1(t) = \cos t \, \hat{\boldsymbol{i}} + \sin t \, \hat{\boldsymbol{j}} + 0 \, \hat{\boldsymbol{k}} \, \cos t \in [0, \pi/2].$$

$$C_2: r_2(t) = A + t(B - A) = 2t \,\hat{i} + (t+1) \,\hat{j} + 3t \,\hat{k}, \ t \in [0,1].$$

$$\int_C x \, dx + z \, dy + dz = \int_{C_1} x \, dx + z \, dy + dz + \int_{C_2} x \, dx + z \, dy + dz$$

$$= \int_0^{\pi/2} -\cos t \, \sin t \, dt + \int_0^1 4t + 3t + 3 \, dt$$

$$= -\frac{1}{2} + \frac{13}{2} = 6.$$

6.9 Por el teorema de Green:

$$\int_{nC} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \int_{0}^{x^{2}+1} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dy dx$$
$$= \int_{0}^{1} \int_{0}^{x^{2}+1} (2x-1) dy dx$$
$$= \int_{0}^{1} (2x-1) (x^{2}+1) dx = \frac{1}{6}.$$

6.10.c 1.

$$rot F = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz + y\cos(xy) & xz + x\cos(xy) & xy \end{vmatrix} = (x - x)\hat{\imath} + (-y + y)\hat{\jmath} \\ + (z + \cos(xy) + xy\cos(xy) - (z + \cos(xy) + xy\cos(xy)))\hat{k} \\ = (0,0,0)$$

2. Sea G(x,y,z) la función potencial, así

 $G_x(x,y,z) = yz + y\cos(xy) \implies G(x,y,z) = xyz + \sin(xy) + C_1(y,z)$

 $\bullet \frac{\partial}{\partial y}(xyz + \operatorname{sen}(xy) + C_1(y,z)) = xz + x \cos(xy) \implies C_{1y}(y,z) = 0 \implies C_1(y,z) = C_2(z)$

 $\bullet \frac{\partial}{\partial z}(xyz + \operatorname{sen}(xy) + C_2(z)) = xy \implies C_2'(z) = 0 \implies C_2(z) = K$

Así, G(x,y,z) = xyz + sen(xy) + K, por lo que

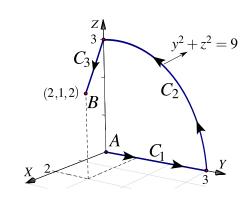
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = G(0,0,0) - G(2,1,2) = K - (4 + \sin(2) + K) = -4 - \sin(2).$$

3. Se seguirá la siguiente ruta

$$-C_1: r_1(t) = (2,1,t), t \in [0,2]$$

$$-C_2: r_2(t) = (t,1,0), t \in [0,2]$$

$$-C_3: r_3(t) = (0,t,0), t \in [0,1]$$



Así

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = -\int_{0}^{2} (t + \cos(2), 2t + 2\cos(2), 2) \cdot (0, 0, t) dt - \int_{0}^{2} (\cos t, t \cos t, t) \cdot (1, 0, 0) dt - \int_{0}^{1} (t, 0, 0) \cdot (0, 1, 0) dt$$

$$= -\int_{0}^{2} 2t dt - \int_{0}^{2} \cos t dt - 0$$

$$= -t^{2} \Big|_{0}^{2} - \sin t \Big|_{0}^{2} = -4 - \sin(2)$$

6.11 • $\mathbf{F} = (P, Q, R)$ es conservativo pues $P_y = z^2 + \operatorname{sen} x \cos(\pi - y) = Q_x$, $R_y = 2xz = Q_z$ y $R_x = 2yz = P_z$.

• La función potencial es $\phi(x,y,z) = xyz^2 + \cos(x)\sin(\pi - y) + K$. Por lo tanto

$$\int_{C} F \cdot d\mathbf{r} = \phi(0, \pi, 0) - \phi(\pi, 0, 0) = 0$$

6.12 (a) Como rot $\mathbf{F} = (0,0,0)$, entonces \mathbf{F} es conservativo sobre cualquier región simplemente conexa donde $z \neq 0$.

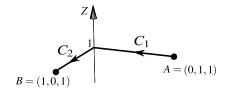
$$\phi = \int 2x + 5 \, dx = x^2 + 5x + K_1(y, z)$$
(b) $\nabla \phi = F \implies \phi = \int 3y^2 \, dy = y^3 + K_2(x, z) \implies \phi(x, y, z) = x^2 + 5x + y^3 + \ln z.$

$$\phi = \int \frac{1}{z} \, dz = \ln|z| + K_3(x, y)$$
Luego, $\int_C \mathbf{F} \cdot d\mathbf{r} = \phi(B) - \phi(A) = 6 - 1 = 5$

(c) Como F es conservativo en regiones simplemente conexas, donde z no se anula, podemos tomar el camino $C' = C_1 + C_2$ para integrar.

$$-C_1$$
: $r_1(t) = (0,t,1)$ con $t \in [0,1]$. $r'_1(t) = (0,1,0)$

$$C_2$$
: $r_2(t) = (t,0,1)$ con $t \in [0,1]$. $r'_2(t) = (1,0,0)$



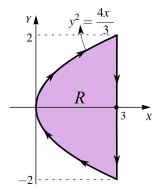
Entonces,

$$\int_{C'} \mathbf{F} \cdot d\mathbf{r} = -\int_{0}^{1} (5, 3t^{2}, 1) \cdot (0, 1, 0) dt + \int_{0}^{1} (2t + 5, 0, 1) \cdot (1, 0, 0) dt = -1 + 6 = 5$$

Como se cumplen las condiciones para aplicar el teorema de Green en el plano, excepto la orientación de la curva, entonces

6.13

$$\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r} = -\int_{-2}^{2} \int_{3\nu^{2}/4}^{3} 1 - 0 \, dx \, dy = -8.$$



6.14 Vamos a proyectar sobre el plano xy. Como se ve en la figura, la proyección está entre los círculos $x^2 + y^2 = 1$ y $x^2 + y^2 = 2$ con $0 \le \theta \le \pi/4$. Entonces

$$A_{S} = \iint_{D} \sqrt{1 + z_{x}^{2} + z_{y}^{2}} dA$$

$$= \iint_{D} \sqrt{1 + 4x^{2} + 4y^{2}} dy dx$$

$$= \int_{0}^{\pi/4} \int_{1}^{2} \sqrt{4r^{2} + 1} r d\mathbf{r} d\theta, \quad \text{(sustitución: } u = 4r^{2} + 1\text{)}$$

$$= \frac{\left(-5\sqrt{5} + 17\sqrt{17}\right)\pi}{48}$$

6.15 La proyección de la superficie S sobre el plano XY es el círculo $x^2 + y^2 = 1$.

$$dS = \sqrt{z_x^2 + z_y^2 + 1} \, dA = \sqrt{\frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2} + 1} \, dA$$

$$A_S = \iint_{\mathcal{S}} d\mathbf{S} = \int_0^{2\pi} \int_0^1 \sqrt{2} r dr d\theta = \pi \sqrt{2}.$$

6.16 Vamos a proyectar sobre el plano *XY*. La proyección es el círculo $x^2 + y^2 \le 2$.

• Como $z = \sqrt{9 - x^2 - y^2}$ entonces podemos poner $\mathbf{N} = \frac{(-x/z, -y/z, 1)}{||(-x/z, -y/z, 1)||}$. Luego,

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS = \iint_{S_1} (y, -x, 8z) \cdot \frac{(-x/z, -y/z, 1)}{||(-x/z, -y/z, 1)||} ||(-x/z, -y/z, 1)|| dA$$

$$= \iint_D 8z dA$$

$$= \int_0^{2\pi} \int_0^2 8\sqrt{9 - r^2} r dr d\theta$$

$$= \frac{16\pi (5^{3/2} - 9^{3/2})}{-3}$$

6.17 Podemos aplicar el teorema de la divergencia,

- $\bullet \operatorname{div} \mathbf{F} = y^2 + z^2$
- La proyección es el círculo $x^2 + y^2 \le 1$

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{N} dS = \iiint_{Q} \operatorname{div} \mathbf{F} dV$$
$$= \int_{0}^{2\pi} \int_{0}^{1} \int_{-1}^{1} r^2 r dr d\theta$$
$$= \pi$$

6.23 Se puede aplicar el teorema de divergencia. *div* F = 1 - 1 + 2 = 2.

$$\iint_{S} \mathbf{F} \cdot \mathbf{N} d\mathbf{S} = \int_{0}^{2} \int_{0}^{4-x^{2}} \int_{0}^{3-x} 2dy dz dx$$

$$= \int_{0}^{2} \int_{0}^{4-x^{2}} (6-2x) dz dx$$

$$= \int_{0}^{2} (6-2x)(4-x^{2}) dx$$

$$= \int_{0}^{2} (2x^{3} - 6x^{2} - 8x + 24) dx$$

$$= \left(\frac{x^{4}}{2} - 2x^{3} - 4x^{2} + 24x\right) \Big|_{0}^{2} = 8 - 16 - 16 + 48 = 24$$

6.24 Un vector normal es $N_1 = (2x, 0, 1)$.

$$A = \iint_{S} dS = \int_{0}^{2} \int_{0}^{x} \sqrt{4x^{2} + 1} dy dx$$
$$= \int_{0}^{2} x \sqrt{4x^{2} + 1} dx$$
$$= \int_{1}^{17} \sqrt{u} \frac{du}{8} = \frac{u^{\frac{3}{2}}}{12} \Big|_{1}^{17} = 5,7577$$

6.25 $S: \mathbf{r}(x,y) = (x,y,1-(x-2)^3), x \in [1,2], y \in [0,3]$

$$\iint_{\mathbf{S}} \mathbf{F} \cdot \mathbf{N} d\mathbf{S} = \int_{1}^{3} \int_{0}^{3} (0, x + y, 1 - (x - 2)^{3}) \cdot (-3(x - 2)^{2}, 0, 1) \, dy dx$$

$$= \int_{1}^{3} \int_{0}^{3} (1 - (x - 2)^{3}) \, dy dx$$

$$= \int_{1}^{3} \int_{0}^{3} (-x^{3} + 6x^{2} - 12x + 9) \, dy dx$$

$$= 3 \int_{1}^{3} (-x^{3} + 6x^{2} - 12x + 9) \, dx = 3 \left(-\frac{x^{4}}{4} + 2x^{3} - 6x^{2} + 9x \right) \Big|_{0}^{3} = 6$$

6.26.b $C = C_1 + C_2 + C_3 + C_4$.

1.
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} + \int_{C_3} \mathbf{F} \cdot d\mathbf{r} + \int_{C_4} \mathbf{F} \cdot d\mathbf{r}$$

(a)
$$-C_1: r_1(t) = (t, t, 0) \ t \in [0, 1] \implies \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = -\int_0^1 -t^2 dt = \frac{1}{3}$$

(b)
$$C_2: r_2(t) = (0,0,t) \ t \in [0,1] \implies \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 0 \ dt = 0$$

(c)
$$C_3: r_3(t) = (0, t, 1 - t) \ t \in [0, 1] \implies \int_{C_3} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 1 - t \ dt = \frac{1}{2}$$

(d)
$$C_4: r_4(t) = (t, 1, 0) \ t \in [0, 1] \implies \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 -1^2 dt = -1$$

$$\int_{C} \mathbf{F} \cdot \mathbf{dr} = 1/3 + 1/2 - 1$$

2.
$$\iint_{S} rot F \cdot N dS = \iint_{S_{1}} rot F \cdot N dS + \iint_{S_{2}} rot F \cdot N dS.$$

rot
$$\mathbf{F} = (-1, -1, 2y)$$

Para S_1 un vector normal es $N_1 = (1, -1, 0)$ (acorde con la orientación de C).

$$\iint_{S_1} rot F \cdot N_1 dS = \iint_{S_1} 0 dS = 0$$

Para S_2 un vector normal es $N_2 = (0, -1, -1)$ (acorde con la orientación de C).

$$\iint_{S_2} \mathbf{rot} \, \mathbf{F} \cdot \mathbf{N}_2 \, d\mathbf{S} = \int_0^1 \int_x^1 1 - 2y \, dy \, dx = -1/2 + 1/3.$$

Finalmente, $\iint_{S} \mathbf{rot} \, \mathbf{F} \cdot \mathbf{N} \, d\mathbf{S} = 0 + -1/2 + 1/3$.

6.27 $\int_C F \cdot d\mathbf{r} = -\frac{128}{15}$. Note que el vector normal adecuado, es N = (-2x, -1, -2z)/||(-2x, -1, -2z)||.

6.29 Por el Teorema de Stokes

$$rot(F) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 - y & yz - x & x + 2y \end{vmatrix} = (2 - y, -1, 0)$$

Un vector normal para y = 2x es $N_1 = (2, -1, 0)$, pero la curva gira a favor de reloj respecto a N_1 , por lo que ha que ajustar el signo.

Así

$$\int_{C} F dr = -\iint_{S} \mathbf{rot}(F) \cdot \mathbf{N} dA$$

$$= -\iint_{R} (2 - y, -1, 0) \cdot (2, -1, 0) dA$$

$$= -\iint_{R} (-2y - 3) dA$$

$$= -\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} (-2(2r\cos\theta) - 3) r dr d\theta$$

$$= -\int_{0}^{\frac{\pi}{2}} \left(-4\frac{r^{3}}{3}\cos\theta - 3\frac{r^{2}}{2} \right) \Big|_{r=0}^{r=1} d\theta$$

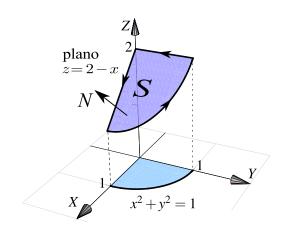
$$= -\int_{0}^{\frac{\pi}{2}} \left(\frac{-4}{3}\cos\theta - \frac{3}{2} \right) d\theta$$

$$= -\left(\frac{-4}{3}\sin\theta - \frac{3\theta}{2} \right) \Big|_{0}^{\frac{\pi}{2}} = -\frac{-4}{3} + \frac{3\pi}{4}$$

6.31 Se cumplen las condiciones para aplicar el teorema de Stokes (Teo de Green en el espacio). Podemos tomar como la superficie S, la porción del plano z = 2 - x limitada por el cilindro $x^2 + y^2 = 1$. Entonces un vector normal que nos sirve es N = (1,0,1).

Como
$$\mathbf{F}(x,y,z) = (x+z, 2y, y-z)$$
, entonces $\mathbf{rot} \mathbf{F} = (1,1,0)$.
$$\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \mathbf{rot} \mathbf{F} \cdot \mathbf{N} dS$$

$$= \int_{0}^{\pi/2} \int_{0}^{1} (\mathbf{1},\mathbf{1},\mathbf{0}) \cdot (\mathbf{1},\mathbf{0},\mathbf{1}) \, r dr d\theta = \pi/4$$



6.32 Proyectamos sobre *XY*

$$A_S = \iint_{\mathbf{S}} d\mathbf{S}$$

$$= \int_{\pi/4}^{\pi/2} \int_{1}^{\sqrt{3}} \sqrt{1 + 4r^2 r} \, dr \, d\theta$$

$$= \frac{1}{12} \int_{\pi/4}^{\pi/2} (1 + 4r^2)^{3/2} \Big|_{1}^{\sqrt{3}} \, d\theta = \frac{\pi}{48} (13\sqrt{13} - 5\sqrt{5})$$

6.33 Proyectamos sobre *XY*.

$$\iint_{S} \mathbf{F} \cdot \mathbf{N} \, d\mathbf{S} = \int_{1}^{2} \int_{y}^{4} (xy, x, z+1) \cdot (0, 2y, 1) \, dx \, dy$$
$$= \int_{1}^{2} \int_{y}^{4} 2xy + z + 1 \, dx \, dy$$
$$= \int_{1}^{2} \int_{y}^{4} 2xy + 4 - y^{2} + 1 \, dx \, dy$$

